
NEW HAVEN CONN DEPT OF COMPUTER SCIENCE

I

~~~ 8247

I I

I

J
In



‘ O I.~ ~ 28  ~D 2.5
I. L~

~ ~: HIII~
2

LI
• __________

• .25 1111ii•~ UuI~
MICROCOPY RESOLUTION TEST CHART

N I ( ~N~~ BUREAU Of ~~~N A R ~~ 1 f 6 ~ -~



II -
~~~~~~~ ~~~~~~~~

—

~~~ ~~~~~~~~~~~~~ TEl ‘1’

r 
SECURITY C L A S S I F I C A T I ’ ~P4 o r T HI S  PA ’ ~ E rwhen oat. Fnt*r ’~ )

REPORT DOCUMENTATION PAG I~ BEFO~~~E C O~~~PLET~~N G FO~~~M

h REPc)f tT N U M B E R  ‘
~2, GOVT A~~~CESSiON NO. 3. R EC I PI L NT S C A T A L O G  N LJ U B ES

GZ4R—2297

~ S Definition Mechanism for Standard PL/I ._] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_______________________________________________________ 6. P ~~~~~~~~~~ eTh~~~~~EPQ

b. CONTRACT OR GRANT NUMBER(S)

\~~ 
,~~~~~~~ ~~~~~~~

ae1
/

41a
r7iY j  ~~~~~~~~~~~~~~~~~

9. PERFORMING O R GA N IZ A T I O N  NAME AND A DOnESS 10. PROG RA M ELEME NT . PR OJ E C T , IA SI(

Yale University
Department of Computer Science 

06520 /
II. CONTROWNG : :F ICENAM E AND AO DR ESS 12. REPORT DAT 

~76
Information Systems Program ~~ R UM 8ER  O~

Arlington, Virginia 22217 _____________ ___________

14. MONITOR , 6 ADDRESSI:f d,iferen t frOm Controi l ing  Of f i c e )  IS . SECURITY CLASS. (of this report)

/ Unclassified
ISa. D E C L A S S IF I C A T I O N  D O W N G R A D I N GI SCHEDULE

lB. DISTRIBUTION STATEM ENT (of this Report)

Distribution of this report is unlimited

17. DISTRIBUTION S T A T E M EN T  (of A. abs tract  entered in Block 20, 11 diflevent 1 m m  Report)

4 lB. SUPPL EMENTARY NOTES ~~~
Ui _ _

1~DV L6l~
19. KEY WORDS (Continue on reverse aide if necessary Crid identify by block number)

formal definition pL/I
standards .. . .

BASIS/I *

programming languages
semantics

20. A B S T R A C T  (Coritinu. on reverse efde If necessary sod id en t i fy  by block number)
‘ •

~~~~~~~~~~~~~~~~ The mechanism used to define the progranm~ing language PL/I in the recently
adopted American National Standard is presented. This method provides a
rigorous though semi—formal specification of the language. It uses the model
of translation of programs into an abstract form to define the context-free
and context-sensitive syntax. The semantics are defined by the interpretation
of the abstract form of the program on a hypothetical machi ne. The method and
motalanguage are presented along with several small examples to illustrate the
definition technique’s features. Thf* complete definition process is shown by~~

DD JA N 73 1473 EDITION OF I N ov 6 5 IS OBSOLETE

L ~ ‘!W!! ~~~~~~~~~ ~

~~— - ~~~~~~~~~--—~~~ -- ~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~

-—-—-
~ ~~

-r ~~
. . — — — — — - — —

~~~~~~ ~
- .

N
~

tI~e definition of a small example language.~

I

~jL

- - _~ .L±.A.._.a ~~~~~~~~~~~~~~~~



~
.-

~
--—..—

DISCLAIME R NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAIN ED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—-~~~~~~~~~~~~ -——
,—
~~~~~~~~~

—-
~~~~
—-

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

i~J1Ir-~

Research Publication Gl’~ —2297

ThE DEFINITION MECHANISM FOR STANDARD Pt/I

Michael Marcotty *
Computer Science Department

Research Labora tories
General Motors Corpora tion

Warren , Michigan 48090

Frederick C. Sayward**
Depar tmen t of Compu ter Science

Yale University
New Haven, Conneticut 06520

* Part of this work was done while the author was at the University
of Massachusetts, Amherst.

** Part of this work was done while the author was at Brown Univer-
sity, Providence , R. I. under the sponsorship of NSF Grant
GJ—28074 and part at Yale University under ONR Gran t
N00014—75—C—0752.

December 1976 . 
~~~~~~~

,.e hg~. 0
Submitted for publication in

—- ‘
IEEE Transactions on Software Engineering

1’
Oi~~i~~lC.~ ~~~~ -

-

—

_ .t ~
.~~ t!~t ~ VWIA L

~~~~ —~J- - - i

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ -n--- .

Abstract

The mechanism used to define the programming language PL/I in the
recently adopted American National Standard is presented. This
method provides a rigorous though semi—formal specification of the
language. It uses the model of translation of programs into an
abstract form to define the context—free and context—sensitive
syntax. The semantics are defined by the interpretation of the

• abstract form of the program on a hypothetical machine. The method
and metalanguage are presented along with several small examples to

• illustrate the definition technique’s features. The complete
definition process is shown by the definition of a small example
language.

- -~~~~~ ~~~~~~~~~~~~ •~~~~
• •~~~~~~~~~~ -~~~~ -~~~~~~~~~~~~~~~~~~~

ii

TABLE OF CONTENTS
PAGE

• I . INTRODUCTION 1
1.1 Prelude 1
1.2 A short History of BASIS/i 3
1.3 Prerequisites 5

II. THE DEFINITION METHOD 5
2.1 The Abstract Machine 6
2.2 The Definition Process 7

III. THE ABSTRACT MACHINE ’S DATA 10
3.1 Tree Terminology 10
3.2 The Machine State 11
3.3 The Metabrackets 12
3.4 The Definition of Trees 13
3.5 Unique—names and Designators 17

IV. THE ABSTRACT MACHINE OPERATIONS 18
4.1 The Execution of Operations 19
4.2 Operation Format 20
4.3 Variables 22
4.4 Tree manipulation Instructions 22

• 4.5 Control Instructions 26
4.6 Validity Checking • 29
4.7 Dynamic Macro 30

V. INFORMAL DESCRIPTION OF SAL 31
5.1 Variables 31
5.2 Assignment Statements and Expressions 32
5.3 Conditional Statements 32
5.4 Labels 32
5.5 Input and Output 33
5.6 The Return Statement 33

VI. THE RUNNING EXAMPLE 33

VII. INITIALiZAT Io N OF THE ABSTRACT MACHINE 34
7.1 State of the Ah8tract Machine l)uring Translation 35
7.2 Machine lnltiaiIi .aL [on 35
7.3 The I) e f ln e— p r o g r a m Operat Ion 36
7.4 The Running Example 36

VIII. THE C0NCRF;TE SYNTAX 37
8.1 The Low— l evel Syntax 37
8.2 The h igh—level Syntax 38

IX. THE TRANSLATOR (PARSE PHASE) 39
9.1 The Operations 40
9.2 Application to the Running Example 41

I ~~~~

- -

~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:~~~~~~~ ~~
- ___

iii

X. THE ABSTRACT SYNTAX 46

• XI . TEE TRANSLATOR (CONSTRUCTOR PHASE) 50
11.1 Expanding the Concrete Tree 50
11.2 Analyzing Declarations 51

• . 11.3 Building the Abstract Tree 52
11.4 Application to the Running Example 58

• . XII. THE MACHINE-STATE SYNTAX 61

Xlii. THE iNTERPRETER 62
13.1 Initialization 62
13.2 Statement Interpretation Control 63
13.3 Interpretation of Statements 64
13.4 Expression Evaluation 66
13.5 Storage Manipulation 67
13.6 Storage Reference 67
13.7 Abnormal Termination 68
13.8 Application to the Running Example 68

XIV. POSTLUDE 75

XV. REFERENCES 76

Ii
_ _

- •
•

1.

1. INTRO DUCTION

1.1 Prelude

It is all very well fo r Hurnpty Dumpty to say “When I use a word ,

it means just what I choose it to mean ” but unless the audience has access

to his dictionary , understanding is very difficult. We rely heavily on the

meaning of words being constant. For example , when we buy a bottle of

asp irins , we count on the e f f e c t of the tab lets being essentially the same ,

no mat ter who made them , adve rtisement claims notwithstanding.

In the United States , the U. S. Pharmacop ia assures the user that

the drugs it lists are of standard composition. Although this is defined

primarily for the pharmacist and is writ ten in a precise technical language ,

it is consulted by ma ny sophisticated users who understand its terminology.

The standards for programming languages form an analogous set of

definitions. Their existence assures the user that a program wri t ten in a

standard language can he moved from one Implementation to another. However ,

the definitions are directed principally at the implementor and not the user.

Sophisticated users and text—book authors , for example , will also want to read

the formal definition of the language to get the final word on the minutiae

of the language. The definition is not a tutorial document but must provide a

complete and unambiguous specification of the language and this requires a

•

. considerable amount of formalism . In general , this formalism has been absent

in the past , resulting in disparities between different implementations of the

“same” standard language.

~~~~~~~~~~~~ • - ~~~~~~ •- •
~~~~

•
~~~~

• - •~~~~~ •~~~~~~~~~•- •~~~ •~~~ • ~~~ •-- ---



I ~-

2.

• Recently, a definition of the programming language PL/I prepared

by a Joint Project sponsored by the European Computer Manufacturers ’

Association (EcMA) and the American National Standards Inst i tute (ANSI) has

been adopted as a standard by ANSI. This language is defined in “BASIS/ i”

[E2] using a semi—formal def ini t ion method. Although languages such as

BASIC [L3] ,  ALGOL 68 [W4 ] ,  and indeed PL/I  itself [A2 , A3 , L4, L5] have been

defined formally , this is the first time in a standard that both the syntax

and semantics of a programming language have been defined with such a

degree of rigor.

The purpose of t h i s  paper is to present an introduct ion to the

def in i t ion  method of BASIS/i ~w using it to define a small a r t i f ic ia l

language , SAL , chosen to illustrate the salient features of the technique .

The small size of SAL, helped by many examples , permits an overall view

of the method unimpeded by a mass of detail. As a further simplification ,

we have only described those parts of the BASIS/l formalism required for

the specification of SAL. However , we indicate where metalinguistic extensions

are needed in defining a language like PL/I. The merits and demerits of

the formalism are not discussed .

The paper Is organized as lollows : section 1 is an overview and

discusses the PL/I standardization project in general , sections 2 through

4 define the metalanguage of BASIS/i , sections 5 and 6 provide a transition

point with an informal discussion of SAL, and sections 7 through 13 give a

• formal definition of SAL using the metalanguage .



.
~~~~~~~~~

• ______ •— • •

~~~~

- — - •
~
-•——•-- -•- •- —•--

~~~

•--

3

1.2 A Short History of BASIS/i

In 1969 the Joint Project for PL/I standardization was launched by

ECMA and ANSI. The standard was developed through a process of successive

refinements of the working document, BASIS/i , with new versions published

about every six months. As a starting point , IBM gave the project their

1969 March PL/I Language Specifications modified to exclude some items

thought to be unsuitable for standardization . These FL/I specifications

were written in English and the Project soon realized that a more formal

style would be necessary to obtain the required precision in the definition

[B6] .

•
- The IBM Vienna Research Laboratories had by that time published a

completely formal definition of a version of FL/I [A2, A3, L4 , L5] in

what is now known as the Vienna Definition Language [L3 , W3]. This

definition was based on the notion that interpretive execution of a

program on an abstract machine constitutes a semantic description of the

program . Originated by Mccarthy [Ml , M2], Landin [Li, L2], and Elgot [El],

this concept was first followed up by IBM Vienna. In the early stages

there was also a parallel effort at the IBM Hursley Laboratories in England

by Beech et. al. [A4 , B2, B3, B4] , who favored a semi—formal definition

of PL/I using a machine—state that more closely resembled actual

implementations.

Despte the perceived need for a rigorous definition , the Project

felt that the strict formalism of the Vienna method would hinder the

acceptance of the future standard . It was therefore decided to base the

• definition on the Hursicy approach and retain the English language flavor.

The language they developed to define P1./I, the BASIS/i metalanguage, was

_
- Un

4

a semi—formal programming language with defined phrases that express the

operations used in the definition allied to a completely formal specification

of the metalanguage’s operands. Although adopted by the whole project,

the bulk of the work was carried out by a relatively •mall subconunittee [B7].

In accordance with ANSI standardization procedures, beginning on March

28, 1976, BASIS/i was made available to the world—wide computer community

for public comment. The result was twofold : first, several small technical

errors were detected and second , modifications to the proposed FL/I were

incorporated . For example, the standardization committee had decided to

exclude the % INCLUDE feature from standard PL/I on the grounds that its

inclusion would make unfair requirements on an implementor ’s operating

system. Public outcry from structured programming enthusiasts, however,

led to the incorporation of the % INCLUDE statement into standard PL/t.

BASIS/i was accepted by the ANSI subcommittee on standardizing PL/I

and on August 9 , 1976 , ANS I made this decision official. This has the

• following impl ica t ion : if any U .S . government agency wishes to establish

a standard regarding PL/ I, the BASIS/i standard must be used. For example,

if the U.S. Army wishes to buy only computers with standard PL/I compilers,

then tho8e compilers must conform with BASIS/l [si].

The current activity of the standardization committee is to develope

subsets of F L / I that are suitable for standardization . This task had been

started during the preparation of the full standard but was postponed for

• lack of effort. Standard subsets were also requested during the public

comment period. A standard realtime programming sublanguage is being

developed and other types of sublanguages are under consideration .

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5

1.3 Prer~ juisites

‘lb nderstand B~SIS/l r~~uires sai~ ao uamtance with the general roticr~ of

• formal syntax and operationa l semantics as well as a f~ niliarity with sate

existing version of Pill. Here , we assine sate technical backgmund in formal

syntax and s~nantics al  tix ugh a kr~~ ledge of PL/I is not essential. The reader

is referred to [B5:] for a c~ reral survey of the structure of P1./I, to [Al J for

an introduction to formal syn tax, and to 1W2 ] for operational s~nantics.

2. ThE DFFTNITION ~~ fl 1OD

• In 1962 Gaxwick{ (1] propcsed that the best way to provide a cxxpl ete

definition of a proqramünq l anguage was a particul ar inpl~ tentation on a

specific machine. This method of definition is obviot&y unsatisf~~tory for

• a machine ix~~~pendent l anguage, nevertheless , it is frequentl y used in r~~tic~~.

It is not w~known for an ii~pl esentor to “ xwrect ” a discrepancy between a

• cu~~iler and its manual by changir~ the manual !

The d e f i n i t i o n  method of BASIS/i escapes from the inevitable interaction

with host hardware and operating system by making use of a hypothetical

• machine devoid of any connection with specific real hardware . The definition

is thus operational in nature , i.e. the meaning of a construct of the language

is specified by the changes its execution causes in the state of the machine.

These changes are described algorithmically in the definition , no t because

the algori thm must be followed precisely by an implementation but because

ft is a systematic way of achieving a complete definition of a complex

lang uage , thus able to answer unforseen questions . Implementations are

free to use other algorithms and to take advantage of particular hardware

f ea t u res  to provide the syntax and semantics specified by the definition .

- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . — • —••~~
-. •• — • . • •• •• •• • . • •

~••• •~~~.— • __• • _



______________________________ 
• 

.,“

6

using tbe ~~erational tethniq~e, B~sIS/1 has specified every detail of Pill

in ~~~ of three ways:

— The ex~~t specification is suppl ied in BASIS/i. -

- The detai l is specified as “h ip1 es~ ntation defined ’ in BASIS/i.

For exaiple , the maximun value for nuitt~ers is lef t for the

implutentor to define.

- The detail is specified expi ic~itly as beir~ “undefined”. Fbr

exaiple, the sequence in which subscripts are evaluated is undefined.

This means that the inp letentor is free to choose the sequence but

cbes not need to specify it to the user.

The essential point is that there are no gaps in the definition where nothir~

is specified at all.

BASIS/i describes what an implementation must co to conform with the

standard . As indicated above, an implementation is given great flexibility

and may also choose to extend the language. The basic measure of conformity

is that the implementation must provide al.l the linguistic features defined

in BASIS/i and tha t i cip l enientation defined extensions must not effect programs

not using such extensions. Note tha t conformity Is not that a given program

with given input data must produce the same w i t  put  data on all implementations .

2.1 The Abstract Machine

Although abstract , the hypothetical machine used in the definition has

• a considerable resemblance to the architecture of the real machine. The

abstract machine is shown schematically in Figure 1.

- • - —
~~~~~~~~~~~~

-
~~~~~~~~~~~~



7

PIP.CMUIE OPERATIONS

(described hy a s et rjf a1qo r 1t ~ is )

MEMORY

(Changinq machine-state tree )

machine—s ta te

FREF 1~~~~~
j

~~ ,,<<
“
~

‘ N
,>~ 

— 

T)’~_
OUTPUT DATA

[ INPUT DAtA

Figure 1. The Abstract Machine

The machine has a set of operations defined by algorithms that make

use of a small set of standard basic instructions. Thus the algorithms

are analogous to the microcode of a real computer.

The machine also has a memory whose contents can be changed by the

machine operations. In this memory are stored the information used to

control the execution of machine operations, a representation of the program

being defined , and the values of the program’s variables and datasets during

its interpretation. The abstract machine’s memory is thus the equivalent

of both a real computer ’s main store and its microcode working store,

together with on—line auxiliary storage. At any point in the definition

process, all the information in the memory is represented by a single tree

tha t de fines the “machine—state.”

2.2 The Definition Process

PL/T is defined by specifying the set of legal states of the abstract



~
IpIp. ,rP_•__ 

~
- • •

~~~~
• ,,—,‘ - -•-•.

~~
‘ - - • •

•-
~~~

-
•

- - -,,.•-.•--- ------- -- - -

8

machine and by defining algorithms for the machine operations. These

operations are linked together into a single algorithm whose behavior

specifies the meaning of any PL/I construct. For clarity of presentation,

the algorithm is viewed as two separate processes : a translator which

consists of parser and constructor phases, and an interpreter. Figure 2

shows a schematic representation of the definition algorithm.

~~~ 
CONCRETE)~CONSTRu CTO~~

ABS rRA C

TRANSLATOR INPUT

Figure 2. The Definition Process

The first step is to read in a list of characters representing the

program to be defined . An attempt is made to parse this character—list

• according to the syntax of the written language. We use “attempt” here

because, throughout the definition, checks are made that the program

being defined is valid by the rules of the language. If the program

fails any one of these tests it is rejected and the definition process

stops at that point, leaving the meaning of the illegal program undefined .

Only a valid program has a defined meaning .

Parsing the program transforms It character—list representation into

-, tree structure , the “concrete program , ” stored in memory . The next step

is to construct from this concrete program an internal form suitable for

interpretation, the “abstrac t program .” The translator ’s parsing and

9

construction phases have many analogies with the phases of a compiler

that build the internal form of a program prior to the code generation

stage. The result is an abstract form of the original program where all

the syntactic devices required in the written form of the program have

been deleted and only those parts that are concerned with its meaning

remain. During this translation phase, further validity checks are

made on the program. For example , ther e is a check that no illegal

combinations of data—types are present in expressions.

The final step in the definition process is the interpretation of

the abstract program. During this phase, the abstract machJne behaves

very much like a real computer executing a program. For instance, part

of the machine—stare contains the values of the program ’s variables, while

another part keeps tract of the current statement being executed. In

addition, the abstract machine reads and writes datasets. The meaning of

the program is defined by the sequence of machine states generated as

the program is interpreted .

The existence and relationships of the machine—state , the three

forms of the program , and the datasets , as used in the definition process,

are illustrated in Figure 3, an expansion of Figure 2.

• I _ _ _ _ I II 1 I I I I I 1
•

S$?MC? co,c~~~ £Ii?MC?

IP~ O~~~~?I* ~~~~~~~~~~~~ ~~ flO ~~~~~~
1II~~~

Figure 3. The Expande d De f in i t i on Process

10

3. The Abstract Machine~s Data

All the data itt the abstract machine are in the form of a tree.

In this section we define some general tree terminology and then use

these definitions to describe the tree—like data of the abstract machine.

3.1. Tree Terminology

In defining tree terminology , we refer to the example tree in

Figure 4.

a® C®

1 II B®

F ® c® I
_ _ _ _r h 1

F ® C ® O © X O J ~~~~~

I 1 —

FIgure 4. An example tree structure

Each of the points marked with a circled reference number i8 a node

of the tree. Nodes are subnodes or components

___&___

11

of node . Nodes and are immediate aubnodes of and are

immediately contained by node . A node’s immediate subnodes are

ordered from left—to—right and the meaning of the terms “first”, “last”,
• “leftmost”, “rightmost”, and “follows” are applied intuitively. Some nodes,

fo r examp le , and , do not have any subnodes . These are the

terminal nodes of the tree.

Node (
~
) is the root r~~3e of the tree. Each of the other nodes are subtree

nodes forming four iintediate stt trees. Nodes (13, 0, (~
), and 6~j) are the

root nodes of these subtrees and thansel yes contain subtreeS, and so on. Sate

subtxees are degenerate in that they oonsist of onl y one node , the root node.

A reference to the root rixie of a tree is a reference to the whol e tree unl ess

othexwise stated.

Each node has a ~~~~ associated with it. In Figure 3, for example , these

are “A” , “13”, . . . , “J”. In one tree there may be several distinct nodes of

the sate type, for example nodes (
~
) and (

~) are both of type “D” .

Although not used in defining SAL, BASIS/i uses additional tree

• terminology to aid in defining PL/I’s procedure calls, argument lists,

and data structures.

3.2. The Machine State

The machine-state is a tree structure that canpletely represents the

state of the abstract m~~~ire at all stages in the definition process. There

ari~t , of oourse, rules by which the tree is oonstructed jt~~t as there axe rules

by which val id sentences of a lar~juage can be oonetructed. These are the

rules which comprise the syntax of the language. S~~.~1arly , we can refer to

the rules for constructing the machine—state tree as the machine—state syntax.

These rules specify the types of nodes that may be connected together in

the tree.

-:1 -- -- _ =— —- - -•- - ~~~~~~~~~~
-- —~~~~~~~

-•——- - -
~

- — ----- - - ---- .- -• . • • -- - • •-

12

Although there is just one tree throughout the definition, there are

two distinguishable subtrees of the machine—state that play major roles.

Hence, for convenience only, we isolate these subtrees and describe them

by three quasi—separate syntaxes.

During the translation from the character—list form of the program

to its abstract form, the concrete program is a subtree of the machine—

state. The syntax of the concrete program is defined by a separate set

of rules comprising the concrete syntax. The terminal nodes of the concrete

program are the characters of the written form of the program. Thus the

concrete—syntax defines the character—list representation of the set of

syntactically valid programs.

The abstract program is another separate subtree of the machine—state.

It is the end product of the translator and it is constructed in accordance

with the abstract—sj~~çax. The terminal nodes of the abstract program are

not characters of the language being defined ; rather, they are abstract

entities used for program interpretation .

3 • 3 The ~~tabrackets

The three syntaxes are defined in Backus-Naur Form , BNF [131], with a

few extensions as described in Section 3.4. ‘lb help distinguish the type

nar~~ used in the three syntaxes, characteristic metabrackets axe used as

part of the name:

SYNTAX f IABRAQ(E’lS E~~J~~LE

Concrete $progran)

Abstract < > <program>

Machine-state 4 * 4cperaticin*

13

The concrete syntax has the symbols and keywords of the programming

language as its terminal symbols. The other two syntaxes denote

terminal symbols by underlining the type name . For example, <fixed> and

4undefined are respective terminal symbols of the abstract and machine—

state syntaxes.

3.4. The t~ finition of Trees

The rules of syntax are expressed as production rules in sl ightly

extended ~ lF . For example, consider the BNF production:

4~expression) : : = expzession-b~o~
I $expressionl + ~expression-two)

This production specifies thet an t:expressicm) node may either ha~~ a

single sm.bnode, an $e~q)ressia1-t~~), or it may have three subrxxles , an

e,q ressia~ fol loi~ed by a “+“ fol lowed by an $e~cpression-b~*.

The s~ thols “ ::~~~~, and “I” are netasyntols; they are not part of the

1 anguage being defined, but part of the definition nethani~n. In eddition

to these netasyithols of BNF, the syntax rules in BASIS/i also use “[“, “)“,

“ { “ , and”}”. These extra metasymbols are usea as follows:

1. “ [“ and “ 1” enclose an optional syntactis expression. The production

rule for ~expressionj given above can be written equivalently as rule

HL16 in the concrete syntax of SAL:

HL16 4expression~ ::~ [3expreasion~ +) 3expression—tvo+

2. “{“ and ~l } ? ~ enclose a syntactic expression , generally a set of

options from which one must be chosen. For example, also from the

_______ - ~— •--—--• -~~~ ---- ~
— — - - - ••

14

c~~~~ ete syntax of SAL:

fiLlS fl ogical -expression) ::= $:identifierl

I Iexpressionl (= I 4’) ~~~,ression)

This production states that a fl ogical-expression) either has a sis~~1e

~identifier)’ initec]iate cxiiponent or it has three imnediate caip~ enta,

bi ~expression) nodes separated by ei ther an “=“ or a ~~ character.

Although not needed to define SAL, BASIS/l uses an additional “permutation”

metasymbol to reduce the number of BNF productions needed to express the

fact that PL/I’s myriad of data attributes may be listed in any order in

data declaration statements.

If we add tbe foi l owing productions to ~~l5 and HL16:

HL17 $expression-two) : : [$expression-bJc* *] ~expression-one1

I~~18 ~expression-one1~ : : = ~priinitive-expression~’

I — 3expression—one)

I ($expression)’

HL19 $primitive—expressionl’ : : = $identifierP

I ~constant~

we can draw art exanpi e fran the set of trees of which $expression) is the

rcot rode.

$expressionl

r sion~ + ~expr ss’ion-bio~

sexpreskon—i,~o~ $expres1ion-onø

$expresilion-one) ~priznitive~expression)~

~primi tive1expression~ ~ccnstant)

~identifier)

- -~~~~~~ •--•~~~~ -~~~~~~ - -— •-- •~~~~•“-~~~~~~~~~~~~~~~~~~~“••--- ~~ -~~~~--- ~~~~~~-~~~~•• - _ _

Because this tree thes rot have all its terminal nodes, it is cal led a

partial tree.

An alternative to this graphic representation of trees is

thair description by wenu~~rationN . The entirerated tree form of U.~ above

partial tree is:

~expression) :
~expression) :

~expression-two)~:$expression-oneP:
$prin~itive-express ion) :

$:identifier~;;;;
+
$expression-ti~o):

~expression—one) :
$:priinitive-express ion):

~~~nstant) .

The rules for describing trees by enumeration are:

1. the type of root node is listed. Optionally, this is followed

by a colon and a listing of

2. the immediate components of the root node. Each of these

components may itself be an enumerated tree.

An enumerated tree is terminated by

3. a semicolon. A string of semicolons at the end of an enumerated

tree may be replaced by a period .

-~~~~~~ - -~~~ -~~~~~ -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --

~~~~~~~~~

----

~~~~~~~~

16

If a particul ar node of an enunerated tree is to be referencad specifically,

the type name of the node can be followed by a ~~zm~a ax~1 a local name for

the rode. Thus, in the partial tree :

$:expression):
$expression):

~expression—two) :
$expression—one);;

+

~expression—t~K*, rx:
jexpress ion-one).

the riare rx can be used to refer to the secoril ~expression-t~~) node.

For clarity, enumerated trees are generally shown in an indented

form. However, the notation does not depend on this for unambiguous

representations of a tree.

Fre~ ent use is made of sequenoes of one or nore i-odes of the seine type.

Pbr exaiple, in the abstract program the sta t~~~ntS of the ocnorete progr~ n

are represented by a se~uenc~ of <executable-unit> stt lxees . These are

collected toç~ ther as thinediate con~x nents of an <executable-wtit-list> node.

This rotati~~ is used wherever 1 ists are required in the 4Tiathine-state~.

Similar ly, in the concrete proqr~~ , there is fr~~u~nt use of i-odes of the

same type separated by *xxriiu nales. These are collected together as inrediate

subrodes of a -curinal 1st r x x k ~. The f orm of the enunerated tree for a

s:declaratiOn-C~~I~~
l ist) is:

s:declaraticrl—cXJmal ist) : s:declarat~iOn O~~Ual 1.5t): s:dec1aratiorl-c~~m~al isti :

s:dec 1 ara Lion). $ decl aration) ~decl aration)
s:,)

1 aration). s:decl aration)

s:decl ara tion) .

.trtd q~ on. The met ; ib r ; ic ket ~ around the coimnas are used to avoid conflict

w i th the not ation of th e enu mer~it ed tree .

__~ — —
~~ - . - -- - - - —

17

3.5. Unique—names and Designators

Each node of the 4rnachine-stat& has a uniqus-naire impi icitl y associated

with it. During the definition process each rode, as it is created, is given

a unique-nmne that is different fran the uniqne-nai~ s of all previously created

nodes, whether or rot these nodes still exist. These unique-names can be

visual ized as the circled refererce nunbers on the nodes in Figure 4.

Sate nodes are of type 4designator’~. A desiqnator rode contains a cc~~’

of the uniqus-naine of sane other node and thus points to that node. Al tlou~~

designator ncx~es can point to any type of node, generally, for clarity, they

point to one type of node only and have a type name that contains “—designator”

as a suffix. For exanple, a <declaration-designator> is a node that only

points to <declaration> nodes. Itt the abstract program a <variable-reference>

contains a <declaration-designator> that points to the <declaration> for the

variable being refereroed. Figure 5 shows the way that this takes place in the

<progran>.

<proqrar >

- F
<de c Ia r at1 o n—l1c t ~

<i ~. f-c - U t A i 1 ~~- r n~ t- l 1 S t >

•
~~~~~~~~~~

. . .  

. • .- -T __ _ __ I - I
<e x -cut ;, I~ - nit )

_ _ _  

I —

<decL ,ratlon? ~~~ __________ ~~iSS I)f l f l~( r t -SUt ” T tP f l t 1

I I
I r

/tde n ttfIe r) <va r 1~ h 1 n-~~~~Cr~ p t$on ) <v ~ r i a t I ’  -rpf ,renc,) <r x r resiion ,

- -

~~~~
- -~~-~J

Figure . A fragment of an abstract program with a designator

Designators and trees are such that it is possible to reference the nodes

that contain a designa ted r~~1e as well as the ca~x nents of the designated node.

~~~~~~~~~~-
—— 



18

£~~ trees are said to be ~~ual if they differ only in the uniqus-nai~~

of their i-odes. A of a tree is constri~ ted by creating a tree equal

to the given tree and then changing any designators in the i~~ ly created tree

that point to nodes in the given tree to point to the corresponding rodes

in the r~~ tree.

4. ThE ABS’flWT t~ C11INE OPEiW~IONS

The operations of the abstract machine are specified by al gorithine expressed

in fl-~gl ish prose. Al thc*igh this makes the definition scmewhat less formal,

each algorithm is presented in a standard format and is written using precisely

defined keywords and ç1~irases, in effect a kind of progreiining language. A

machine operation algoritlin has many characteristics of a program; it ~~~

local variables that designate nodes on the qnachine—state~
., it can

create temporary trees, and there are basic instructions for manipulating

trees and doing arithmetic . Operati ons may Invoke one another , possibly

recursively, pass log argu ments and returning values. Internally , the

control schemata are the ,isun~ s !quent hil , eondltional , and iterative

forms .

In defining SAL we will use all of the abstract machine instructions

that are used in BASIS/i to define PL/I.



- ,-----— -,~~~~~ - -~~~~~~ -~~~ - — —- - —~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ 
-

19

4.1 The Execution of Operations

At any time during the abstract machine ’s execution , there is one

“active” operation, i.e., the one that the abstract machine is currently

executing. The ~operation~ tree describing it is the rightmost element

of an ~operation—iist~
. in the 4machine—state~ , as described in the next

paragraph. Each 4operat1on~ has a suhtrec containing a list of designators

pointing to its parameters , local va r iabl es with their current values,

locally constructed trees, and an indication of where in its algorithm it

is currently executing (i.e., a location counter). The invocation of an

operation causes its ‘operation~ tree to be added to the right—haüd end of

the 4operat1on—list~ and it thus becomes the active operation . When the

operation terminates, it and any temporary trees it has created are

deleted from the list and the operation that invoked it once again

becomes the active operation , resuming at the point of suspension. In

BASIS/i, the exact structure of an ‘operatlon~ is left unformalized and

unspecified since it is assumed that the workings of the operation can

be understood without 1ower level of detail.

The 4machine-state* at the start of the definition process has a 4control-

state* conponent with an -4operation-l ist9 containing a single operation

narred “define-program”. This operation invokes other operations that build

the concrete program, translate it into the abstract program and then start

its interpretation. At this point, the sithation is similar to that of an

operating syst~n that has loaded a probl~~ program and is starting its

executi ‘ri. Qntrol is passed to the prthl~~ program, often with a thange of

hardware l ocation—counter. In the abstract machine a 4progran-control 4

am~onent of the ~nachine-state* is created containing a second 4operation-list4

and, whi 1 e i t exists, its r igh thos t ci cient is the active operation. The 

-

~~~~~~


20

operation at the rigtth-hani end of the 4operation-l ist~ in the 4control-state*

is pit into a state of suspended anin~tion until the 4prograi-control* and

its 4operation-1 ist~ are deleted fran the knadiire—stat&’. That happens

when the interpretation of the abstract program terminates.

4.2. Operation Fbrmat

The fol lcMing exanpl e is an operation of the abs tract mathine which

defines SAL. It is not expected that the reader will fully understand

the operation at this point. It is presented here to illustrate the

structural features con~ on to all operations.

Operation: create-assigrment- stht~~ent (cas)

where: cas is an $assignnent-stat~snenU’

result: an <assigrrent-s ta t~~~n t>

Step 1. Let id and ~ c be respectively the invediately contained $Zidentifier)~
and $èxpresionl of cas.

Step 2. Perform fir~d-abstract-declaration(id) to obtain a
(
~~ciaration-

designator>, dd.
Step 3. Perform create-expression(cx) to obtain an <expression> , ax.
Step 4.

Case 4.1. ax inurx)iatel y contains a <variabl e-referenc~ > , yr.
The <attribute> contained by the <decl aration> designated by
de must equal the <attribute> contained by the <declaration>
clesiqnated by the <ck’claratiorr-designator> of yr.

Case 4.2. ax ininodiatc l y contain!; a <constant>, c.
It c contains an ~4integer’-val ue~ then the <dec l aration>
designated by dd must contain <fixed>, otherwise it must
contain <bit>.

Case 4.3. (Othex~IIe).
The <declaration> designated by dd must contain <fixed>.

Step 5. }~ turn an <assig ment—statc~ ent> :
<variable~-referencx~>:

ax.

The written description of the operation consists of a he&1ing and a

body. The heading always contains the word “Operation” and the tn~~ rl i-md

—
- - - - - - - ---- - - -~~-- . ~~ - -

21

operation n~ie. The renair~~ r of the heading depends on the detail s of the

operation , whether it has parateters, and whether it returns a value. The

operation creat -assigrment-statøTent has a single paraieter with the local

nate “cas”. A parateter is a designator pointing at a node in the 4nathine-

stat.e4, possibly in the caller’s local storage. Parameters are thus

passed by reference and it is possible to change the value of the tree

designated by the parameter.

The types of the nodes designated by the parameters are specified in the

where-clause. In !X1~~ operations there may be several al ternative types for a

parameter, the particular one actually designated varying fran invocation to

invocation. In our ex~mpl e, the parameter cas designates an $assignnent—

stat~nent3~ node and thus, the whole tree of which it is the root rode. An

operation may return a ca~~ ete tree, iii ~‘�nich case the type of its root node

will be specified in the resul t—clause of the heading. The create-assigwent—

stht~~ent opera tion returns a ainpl ete tree with an <assigriient—statanent>

root node.

The body of an operation consists of either a s~~uenoe of Steps or a set

of mutua l ly exclusive Cases, ntnthcred soji~mti ally. Each Step or Case can

itself contain a nested sxpx!na� of Steps or a set of Cases. If so, the

n~therinq in t1w i ‘ th Step or Case wil 1 he soguent.ial fran i. 1. This rested

structure continues to arbitrary depth. The Steps of an operation are executed

sø~uential iy except when i~ dified by a control instruction. Each Case is

preceded by a predicate whose truth value determines whether the body of the

Case is to be executed. There must always be one and only one Case whose

predicate is true when any set of Cases is executed. Fbr brevity, the predicate

of the last Case may be “(otherwise)” which is true if and only if all the

—

~

--
~~~~~~~~~~~~~~~~~

—
~~~~~~~~~

- -
~~- -

~ =-

22

other Cases are false. This abbreviation is only used where it saves writing

out a lengthy negation of all the previous predicates.

4.3. Variables

In the body of the operation, local variables are used to designate parts

of the *machine—state~ , Iocally constructed trees , and parameters.

They may also be used to contain integer values. These local variables

are given names consisting of a few alphanumeric characters, usually of

mnemonic significance. By convention , these names are distinct from

English words to avoid confusion with the text. Local variables may

be subscripted . For example , nt[i] is an element of a vector of local

variables nt . the value of the variable i determining a particular

element.

Both local variables and locally constructed trees exist only for

as long as the operation is on an ~operation— 1 ist~ . As soon as the

entry is deleted from the list , the local variables and trees cease to

exist. However , a local tree may be returned as a value of an operation ,

in which case, it is copied to form a tree local to the caller.

4.4 . Tree manipulation instructions

The let instruetion makes a loca l variable designate an existing tree or

a n~~ly created tree. Fbr exanpl e, in the operation create-assigrr~ nt-stat~tent:

Step 1. Let id and c~ be respectivel y the isuediatel y contained
4identifier) and $expression) of cas.

The variable cas is a paratx~ter of the operation and designates an $assigment-

statanent~ rode in the concrete nrcxiram. This rode is defined by the (bncrete

Syntax rule:

liLli. ~assiqri~ent—statment)~ : :~ $ identifier) = $ expression~’

This let instruction creates ~~a local variables, id and ~ c, which respectively

~~~ignate the 41dentifier)~ and $expression)~ im~diate x*rpcxients of the noc~

designated by cas. Both these trees existed before the let instruction was

executed. In the fol lowing let instruction:

Let dso be
4output~-dataset*:

4dataset~~:
4a1 ~~~4aiega~.

F a tree is constructed and the loca l variabl e dso is made to designate it.

Another way to construct a tree is by copying trees designated by local variables.

For exa~p le:

let ids be
4input—dathset4~:

ds
4curren t—nosi tion*:

dg;;

h ere, a tree with root node of t~ ie 4input-dataset~ is constructed and

one of its iit~ediatc cxinponents is a cony of the tree designated by the

local variable ds. Similarly, the new constructed tree contains a copy

of the tree designated by the ~ l oca l variable de. The variahi e ide

designates the entire neil y constructed tree.

There is an implicit form of the let instruction in which the name

of a local variable is listed fol lowing some description of a root node

and a coma . For example , in the predicate of the case :

Case 1.1.2. cx immediate ly contains a {constantj, en. t~ the

predicate is true then the local variable en is made to designate the

$constant~. node. This form of the let instruction can also be used in

- i



24

enuinerat.~d t~ees.

The let instruction is al~~ used to introd~~~ a,vect~~ of local variables.

F3r exasple:

Let nt[1 J, i = 1.. . , n be the ordered list of nodes which are the
ImEdiate cn~~crtents of- the $del imiter)~ and 4ron-del u niter) rodes of t.

sets. a vector of n ~~ ignat~Drs nt. References to elanents of this vector wil 1

be subscripted with a local variabl e containing an integer val ue.

‘I1 ~~ replace instruction is used to substitute a specific tree for a

tree designa ted by a loca l variabl e. For exannie:

Replace the 4basic—value4~ desiqna ted by bvd by a copy of by.

The replaccment takes niace at the node designated by the l oca l variable

and the unique name of the original node becomes the unique name of the

root of the replacement.

The append instruction att~~hes a tree as the righl~tcst el et~ nt of a l ist.

By defini tion , tJ~ re are no ~~~~~ 1 ist nodes in the 4nadüne-stat&. ‘lb a~xid

special cases, the append instruction wil l construct the -list node if it

is apeending an elesont to a non-existant l ist. For exaitple:

Append an
<executable—unit>:

id
a~~;

to the <executable—unit—list> of the <program> .

Here, the append instruction causes a tree consisting of an <executable-~ntit>

with two inu~diate carçrz~ents to be lxiil t and then added as the righ~~~st

criponent of the <executable—unit—list> imediately contained by the abstx~~t

progran. The first tinr~ this instruction is executed, the <e~ecutthle—~z~it-.l ist>

node w i l l  have to be crea ted and connected to the <progran> rode.



25

The action of the r~naining tree manipulation instructions, titl iice tf ose

described so far, depends on the syntax of the trees being manipulated.

The attach instruction constructs a tree ny joining a specific tree to a

designated node. ‘lb make the l ink , the instruction may create the mini.mun

nuther of intervening nodes rnguired by the syntax rules for the tree.

For exanple, the tree for a $declara ticn) is defined by the rul es:

HL5. $declaration) : := $identifier) [$attrihite)]

1116. $attr thite) : := FIXED I BIT

Suppose the local variable ci designa tes a ~declarationP that dees rot contain

an $attr ibute) and thus can be represented as:

-

. 
$declaration) ~~~~~~~~ d

• $ identifier )

Then the resul t of execu ting the instruction

• Attach FIXED to d.

is to make the tree designated by d look l ike:

$ declara tion) ~~~~~~~~~~~~~~~~

I- I
$ identifierP ~attrihute)

I
FIXED

The delete ins truction causes a designated tree to be deleted f rrin its

containing tree. If the deleted tree’ was a mandatory calponent of its

ir~~diatcly containing node, then this node is also deleted and the process is

repea ted until a l egal tree is ohtai r~ d. Al l  deleted nodes are discarded and

cease to exist. For example , part of the 4nachine-stat& is defimad by the

- ~~ - - - --—~~~~~~~~~ —~~~~~ ----• -~~~-- -~~~~~~~~— —•• —~~~~~~~- -— - • —- -~~~~~~~-- - -~~~~~--~~~~~~~
~-



26

rules:

MS. 4interpretation-state~ : : = [4orcx ram-state~l 4datasets4

M6. 4pmgraxn-stat& : : = (proq ran-cvntrol3 4al located-storage*

Execution of the instruction

• E~~lete the 4program-control* fr ~ n the 4uthine-state*.

r~toves the 4progra -oontrofl. But , since it is a rejuired component of 4progra~-

sta t1?~’, the ~program-state~ node and its carponents are also deleted fran the

~ iachine-state*. The 4program-stat& is only an optiona l rode of the

4interpretation-stht& and therefore the deletions stop at this point.

4.5. Control Instructions

The execution sequence of an operation ’s steps follows the order

in which they are written unless one of the control instructions is

executed . In the normal sequential flow of control, once the last

step of an operation has been executed the operation is terminated and

deleted f rom the 4operation— list~~, thus returning control to the operation

that invoked It.

Of the control instructions, the’ .-p to instruction is the simplest. Its

execution transfers contro l tn ~ steT - in the active oneration. For exanpie:

(‘0 tn ~~~trp 1..

ODntrol can he returned exnl icit ly f ruT~ an c~cration to the cal l ing operation

(~j  ther y executing ~ thrTni natc ’ ins truction or by executing a return instruction.

Ihe tenninate instruction is wri tten:

Thrminatx th is operation. 

-- - - • • ~~~~-~~•- ~~~~~~~~~~~ -



27 
• 

-•

The return instruction rot only returns control to the invoking c~ eration

~*~t al so passes back a valuc. If the returned val uc is a local tree belonging

• to the operat ion , the tree is copied to hecrme a loca l tree of the call  ir~g

operation. ~‘)r exainpl e:

Return
<log ica l —expression>:

<variabl e-reference):
dci.

sends the specified tree ~~~k to the caller where it wil 1 be dssignated by

a local variable.

Cbntrol is passed to arother operation by invoking it with the per~~~n

instruction. For exampl e, tJ~ instruction :

Perform create-logical —expression (cl e) to thtain a <l ogical—
expression>, alx.

causes the create-logical-expression operation to be invoked. The local

variable cle strictly designates a tree and this designator is passed as

an argument. An 4opera t ion~ for create-logical—expression becomes the

act ive operation . During this activation , the designator value being

passed as an argument is given a local name and is treated like a local

variable. The “obtain ” part of the perform instruction Is optional.

Where applied , it describes the type of value to be eturned and specifies

a local variable , in this case aix , to designate t~us returned value .

When control Is returned to the calling operation , execution resumes

Immediately following the perform instruction.

In some circumstances , usually after a program execution error , it

• is an Implementat ion decision whether an operat ion Is to be perfor~ned .

I 
- In these cases , the phrase “option ally perform ” Is used . For example,



28

in the instruction

“If the magnitude of ir exceeds an implementation—defined maximum,

then let ir be an 4integer—valueI with an implementation—defined

value and optionally perform abnormal—termination.”

if the computed value ir has a maximum greater than the implementation ’s

maximum allowable value , the implementation has the option of continuing

°r terminating the program ’s execution .

The for each instruction srx~cifies that a scriuence of instructior s is to

be executh( 1 once with each nl3nbcr of a set of obj ects. Thr exan~~1e:

For each <variable—reference’>, vr , of the <variabl e-reference—list>
of st , taken in le ft— tr>-riqht order , perform Ster’s 1.1 through 1.4 .

Here, the perform instruction is used to cause the execution of a self—contained

group of substeps simil arly to the way that it is used to cause the execution

of a a~iipletc opera tion. The Stems 1.1 throuih 1.4 wil l be executed once for

eadi el ~~~nt of the <variabl e-reference-list> . Each time they are executed, the

local vari able yr wil l dcs i jn a te the <variable-reference> currentl y being

operated on. Unl ess an ordering is specified, as it is in this exampl e, the

order in which the el iii~nts of the 1 ist arc chosen for processinq is arbitrary .

The if instruction, a 1 thouqh ! tr i et y speaking not a contro instruction

since it kj~~; not ch3nqc the order t~~~~ exocuLion at Steps, ~bes ~uve scxt~ effect

on the execution ()t t he in~.U u~t ii ;~ s zn the Step. The if instruction

specifies that iii the case that Uiu st,it~~J cor~iition is trw, the instruction



29

l ist that follows the then is to be executed. For ex~~ple:

If the rightmost imnediatc canp’nent of ul cbes rot contain
4 rethrn—statEm~ n t)’ then append

4unit~:

~execuLbb—ujkit)’:$ exccu tab lu—sing 1e—statatent ~ :
~rt-tum—s atc~ii~nt)’:

XE11D~N

to ul.

Optional ly, the if instruction can contain an otherwise part , in which case

the instructions that fol low it are executed only if the stated cor~1ition is

fal se. Thus, for example, in the instruction:

If cd contains 1 IXED then attach <fixed> to ad , otherwise attach
<bit> to ad.

if the condi tion “the node designa ted by cJ contains FIXED” is true , then

the rode <fixed> wil 1 be attached to the node designated by ad. If the

corKiition is false, <bit> w i l l  be attaci~ed. As in BASIS/l , we have no

conflict with the scope of an otherwise part since there are no nested

uses of the if instruction .

4.6 Validity Checking

In both the translator and the interpreter validity tests are

frequently app lied to the program . These are specified by the must and

the must not instructions . For examp le:

The <declaration > designated by dd must cont.in <fixed> .

or:

The ~4basic-va l ue~ des iqnated by bv’d must not contain 4u~~~fined.~~
In either case, if the coidition is not. sat isfied the original source program

is in error ani its meaning is undefirod. The abstr~~t m~~hine stops in an

uMefined state at this point. This is ana l acpus to the situation in a real 

- —  - - -~~~~
——-~~ ~~~~~~~~~ - - -~~- •— ~~~• -~~~~- ~~•-~~~-- -~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~



-~~~ -

30

machine for some types of program error.

4.7 Dynamic Macro

In both translator and interpreter operations it often happens

that one of a set of very similar cases is chosen depending on the

type of node being considered . This could , fo r examp le , be written as:

Step 2.
Case 2.1. ~~~ is an $~if—statment) . -

Perform cre’ate-if-stati~tr~nt(c~~~) to obtain an <if—stat~~~nt> , a~~ .
Case 2.2. cxs is an ~assiqrv~ent—states~ent).

Perform crea te—assigri~rn t—sta txm~ nt (cxs ) to obtain an
<assigrii~ent-sta tciuent>, axs.

Case 2.6. cxs is a ~writ — sta tenent~.
Perform create-write—statanent (exS) to obtaij~ a <write-
state1~?nt> , axs.

To avoid this rather lengthy case enumeration , a so—called “dynamic

mac ro ” instruction Is used and the above step is written as follows:

Step 2. Perform er eate—xxx— statement (cxs) to obtain an
cxxx—st atemen t , axs , where {xxx—statement ~ is
the type of cxs .

Thus the use of “xxx ” Is analogous to the cha racter string matching

and subs t i tu t ion  commonly used in macro assembler languages.



5. ThWO1~~aL DESCRIPTION OF SAL

A definition of SAL , a very ~~al l  l anguage of no practical value, wil l

be used to d~~~nstrate the BASIS/i mathed of language definition. The

fol lowing is an exarpl e of a program written in SAL :

DLEIJtRE I FIXED,

B BIT;
1= 2;

T~)P: RIIAI) Ifl’It~(A , B)~IF1~ *~ I
T!!~~ j  = 1;
~LSE J = A 1* 1;

~1RITT~ FW)1’1(j) ;
I = r + i~ir n

‘flIEN (D ~~ ‘IflP ;

END;

A program in SAL is a l is t  of stat~~~nts terminated by an end-stat8nent.

Apart frcxn the end-stat~ nent, there are assi ;rv~ nt, conditional , declaration ,

go-to, read, return, anu write stat nts. Like PL/I, there are no reserved

~ords in the l anguage. The dis ti no tio~: between keywords and identifiers is

made so 1 ely on context.

5.1. Variables

Variables may be declared in a non—executable declare state~~nt that can

occur anywhere in the program. One ot the t~.o attributes , FIXED or BIT , may be

given to a variable. Fixed variables take positive or nogative integer

va 1 1X?S and hit  variabl es take values C) or 1, meaning false or true respectively.

H a variabl e is not declared, an impl icit declaration for it is constructed.

In the a~x)ve exar~-~le , there is no declaration for the variable A and it wil 1

be impl icitly declared. If a variable is not given an attrib.zte in a declaration,

likc J in the wri tten  declaration and A in the constructed declara tion , it will

receive the attribute FIXED by default.  Thus both A and J wil l be FIXED variables.



- -  ~~- 
-
~~~~~~~~~~

- -
- _

- - -~~~~~~~-~~~~~~~~~~~~~~~~

32

5.2. As sigment Statenents and E~çress ions

The execution of an assignment stat~ nent causes the evaluation of an

e xpressicfl, producing either a fixed or bit va lue. This value is then assigr~ d

to the var iable referenced on the lef t-hand side of the egual s synbol . The

type of the val ue must matd~ the attribute of the variable to whith it is

assigned, i.e., there is no type conversion. An expression may be a constant,

as in I = 2;, a reference to a variable, as in J = I;, a prefix expression,

an infix expression, as in 3 A * I ;, or a parenthesized expression . The

prefix and inf ix expressions arc restricted to operands that have integer

values. The prefix expression uses the negation operation aixi the infix

expression offers a cboice of ~ Idition and nul tipl ication. These operations

have the normal precedence and parentheses may be used to change it in the

usual ~~y. In the event of overflow, the effect is inpi ~~entation defined. It

is an impl~~~ntation decision whether the program is abnorma l ly terminated or

an iinp1~~~ ntation-defined value is produced . Constants can be either decimal

representations of integers or bit values represen ted by “08” and “18”.

5.3 Wndi tional Sta tE!1~ nis

The conditional s at ~im nt is of a conventional IF’-ThEN-optional -E1SE

form. The then and el so erts nuy only be s ingi e sta t~~~nts and may not be

another conditional . The l ogical expression may be either a reference to a

bit variable or a conparison betvecn the integer val ues of t~~ expressions.

I~ th the equals and not-equals conparisons are avai lable.

5.4. Labels

Any executable sta te~x~nt , except the then and the el se parts of a

• conditional statø~’ent may have a label . In the exanple , ‘lOP: is a stat~~ent

label . The go-to stat~~~nt causes control to be transferred unconditional ly to

the nm~ed s tatanent.

33

5.5. Input and Output

• The input and output stata~~ntS interact with a pair of files. The

input fi le , consisting of a list of integer and bit values , is read

sequentially by the read—statement . In executing a read—statement

values f rom the input file are assigned to the variables in the read—

statement ’s list , in left—to—rig ht order. The type of the value read

must match the type of the variable to which it is assigned . It is an

error leading to abnormal termination for a program to read beyond

the end of the input f i le . The output file is initially empty and the

write—statement appends integer and bit values to it.

5.6. The 1~~thrn Statanent

E~cecution of the return-stat~~
ent causes normal termination of the

program. If there is no return stata~~nt inu~ediately before the end—statanent,

one is assuned.

6. The Running Example

Having described the BASIS/l defini t ion mechanism and informally

described SAL , the latter part of this paper will present a formal

definition of SAL in terms of the mechanism . To illustrate the workings

of the definitional process and the trees that are constructed by the

Translator and Interpreter , we make use of an example SAL program , the

so—called “ running example. ” The running example is:

DFEIAPEYB IT ,

READ IN’IO (Y, Z) ;
IF Y THIN X = 2*Z + 1;

ELSE X = 0;
WRITE FR)M CX) ;

4
-~~ ~~~~~~~~~~~~~~~~~~~~ ~

:----
~

-- _ _ _~~~~_ -- —--~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~

-.- - .~~~~~~~~~~~~

34

• . Hence , the rest of the paper will consist of the following parts:

(1) Initialization of the Abstract Machine .

(2) Definition of the parser operations for SAL.

(3) Parsing the running example to produce the concrete program .

(4) Defini t ion of the constructor operations for SAL.

(5) Construction of the running example ’s abstract program .

(6) Definition of the interpreter operations for SAL.

(7) Interpretation of the running example.

The definitions of the three syntaxes for SAL will be interspersed in

appropriate places .

7. INITIALIZATION OF THE ABSTRPCT MACHINE

In this section we describe the initialization of the abstract machine

which takes place at the beginning of the definition process. First we give

the syntax rules which define the 4~achine-state) during the translation

of the character string representation ot the SAL progr~n into its abstract

• program equivalent. We then give the alanrithn~ that control the c~ fini tion

process.

T~~~~~~~~~~:~:~:::~r’-

35

7.1. State of the Abstract Machine During Translation

F Ml. 4nachine-stat& : : <program> 4control-state~

• [4translation-state+ I 4interpretation-statE9’3

M2. 4wntrol—state4 : : = ~4~peration-list~

M3. 4translation-stat& ::= [~progran4’]

M4. .
~~peration4 : : =

‘I1~e exact structure of ~~poration4~ is left unforinalized and unspecified.

Dur ing transl ation, the ~~ach j~~-state* contains a 4translation-stat&

ccziponent.

The translation phase consist s first of reading and parsing the source

program to form the $program)’ cxxnponent of the 4transl ation-stat&’. The

$program)’ is then transl ated into its abs tract form which is attached to the

<program> cti~~onent of the 4nachine—state4’.

7.2 MaChine Ini tial i7atiOfl

¶1t begin the definiti on nrocess the abstract machine is given the fol l~~~ing

initial achine-statc* tree

~nach.ine—state*:<program>
‘Econtrol-state~:

~)p3ration-list~:

• ~~peration~ for define—program ;;
E translation-state9’.

• At this point , since the 4operatior* for define-program is the rightn~st

opera tion of the 4operation-l ist~~, define-program beax~s the active operation

ar id the al~~tract machine starts In execute it.

36

7.3. The Define-program Operation

This is the top-level al prithm that control s the wt~~l e definition

• process.

Operation: def ine-program

Step 1. Perform transl ation—parse—phase.
Step 2. Perform translation—construction-ohase.
Step 3. Per form interpretation-phase.

The translation—parse--phase operation roads and parses the source program,

the translation—construction-phase operation translates the conerete program

into its abstract form , and the in terpre tation-phase operation interprets

the abstract program.

7.4. The Thinning Fxampi e

The execution of Step I in the clef ino—progran operation d~anges the

4~achine—state~ tree to that s~-~~.-zn in Figure 6 • At this point , translation-

parse—phase is the active oneration.

4ucI :in —statc’~
----5” -- .- •~1 .• . •-•.-- I<proqram> ~cnntr(d -state+ 4trarisl ation—state*

-~~peration—l ist+

Q perat.ion+ ~oneration4
for for

defj ne—nrc~ ran translation-parse-phase

Figure o . ~riachi nc—state+ on executing Step 1 of
define—program .

S ~~~~~~~~~~~~~ -S ~~~~~~~ - - S •~~ •~~~~~~~~~~~~~~~~ -S-

31

8. ‘fir: rp.r7rr SY~’1~\X

The cx)rcrete syntax of SAL specifies the written form of the language

and also the concrete tree • The concrete syntax is divided into t~~ parts, a

1 ar—i evel syntax arid a high-i evel syntax. The 1 o~ ~ l evel syntax ci assi !ies

sequences of characters frrm the written form of the oroqrari, the “text”, into

non—de l m i ters (which are ~~rds and constants) separated] ~y del imiters . The

high—level syntax defines the way that a program is 1~iilt fra n delimiters and

non—delimiters. The separation of the concrete syntax into two parts is done

to faci ii ta te the context-sensitive ra~ioval of blanks and the separation of

words into identifiers and keywords. Decause SAL ~~es rot have reserved

words, keywords must be distinguished frcri identifiers purely on the basis

of context.

8.1 The Lcw-level Syntax

Syntax for text

LL1. $tcxt) : : = [~del imiter—listfl $~cielimiter—pair—l ist)~

LL2. ~delinü ter—paii1 : := $non-delimiter) 4:del imiter— l ist)

LL3. $del izni ter) :: + 1 * l — I ~~~ I I I (I) I , 5 ; I : 5 $

Note: “)5” denotes a blank.

LL4. $ron—del iiniterl : : = ~identifier)
I $:cx,nstant~

Syntax for identifiers and constants

LLS. $:identifierp ::= fletter)
I $:identifier) ($letter)~ I $digit~)

LT.6 . flettrr ~ :: A I B I C I D I E I F I C I I T I I I J I K I L I M I N

I () I P 1 0 1 R I $~ I T I U I V 1 W ! X l Y l Z

1L7. ~dF-J] t -~~ ::= 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S--” - S. .~~ .5- ~~~~~~ S

38

LL8. $constant) : : $ fi.ja~d—constant)
I $bit—cciistant)

LL9. $fixed—constant) :: $digit—list)~

LL1O. ~bit—constant) : : (0 I 1 } B

• Syntax for characters

The input to the definition process is a $:character—l isU . ‘1~~re are 47

characters in the S~L character set. Each character of the $:character-listl

that represents the program being defined belongs to one of three grc~ ps:

diqits, letters, and delimiters.

LL11. $ character) :: $:diqit)~I fletterl
I tdel imiter~

8.2. The High—level Syntax

The *pal of the high-level syntax is to classify s~~uen~~s of del imiters

and ron-del imitrrs into units which correspond to SAL stat~nents.

Syntax for program

Iff.1. $preqran* : $unit—1 .ist~ $~end—statat~ent~
11L2. ~uniU :: 4~1ec r— st a tiwnt 1

I $~exvcutah I ~—uni t. ~‘

I-fbi. ~ent I—: ; tata w~nt) : N1)

Syntax for dec larations

11L4. $declare—statcncntl : DLUAIU~ $declaration— x~ITlalist.1

• ILLS. I decl araLion~ ::= ~identiIicr) [$attribute)]

11L6. $attrthute~ ::. Fixil)
• I

~;yn tax tor eX(CUtahl&?— ufl J t13

fU.7. ~ex’cutaJdt’—unit~ : :~ statc~unt—n.3nI~fl(~~i f—sta ti~~~nt) I ~executable—s1ngie—stat~~Ent.~)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~ -~~

39

HL8. ~stat~ i~ nt—nan~~ : := ~identifier)

}1L9. $if—stater~nt) : := IF flogical—expression)
Th1E~I 4executabl e—singl e-stat~ ent)[ELSE $ executabl e-single—stat~~~nt) ]

Syntax for singi e-statenents

IIL1O. $executabl e—singi e-stateiir~nt) : : = $ assigriment-s tatø~~nt)
I Dto—state~ent)
I ~read—statE~~ nt~I $return—stat~ rent)

- I 3~write—statarent)

}U..11. ~assigrv~ nt-statanent) : := Udentifier) = ~expression)

HL12 . $goto—stat~ nent) : := G~ IO $:identifier)

HL13. $re d— stat~ nent) := 1~EAD ItTIO ( ~identifier-cxiiirial ist) )

l~~14. j return—statenent) : : = RE’flJBN

111.15. ~write-stat~~~nt) : := WR~ IE FIOM ( Udentifier-uTtTal 1st)

Syn tax for expressions

HL16. flogical —expression ~ : := $ identifier)
I $ expression~ (= I 4 )  rexpression)

HL17. rexpression) : : = [$expression) +1 $ expression—t~~*

11L18. rexpression- two) : := [$e~pression- two) *] cpression-ore)

HL19. $expression—one) : := ~primitive—expression)
I - 4 expression-onel’
I ( $expression)

HL2O. rprimitive—expression) : := $identifier)
I ~constant)

9. ~fliE TRANSLNZOR (PARSE PILZ~SE)

The function of the parse phase of the translator is to take the character

1 1st representation of the SAL program and generate a correspo~iing coi~~rete

program. The parsing is per fori~~d in two stages correspor~iirq to the M~~

levels of the concrete syntax.



40

9.1 The Operations

Operation: translation-parse-phase

Step 1. Obtain fra~ a source cots ide this definition c. seqt~ nce of characters
constructed in the form of a $diaracter-l ist) , ci .

Step 2. Perform parse(cl) to ct,tain a $ program) , cp.
Step 3. Attach cp to the 4translation-sthte~ .

Operation : parse (ci)

~here: ci is a $character-l ist)

resul t: a ~proqran)

Step 1. Perform low-level—rklrse(cl ) to obta in a i text), bc.
Stv~ 2. Perform h iqh— lcve l— rv~rse (~~ ) to obtain a $proqrarn) , cp.
Step 3. Retu rn c :.

Operation: lc*~-levcl—par sr (cl)

where: cl is a rcharacter—i ist)

result: a $ tvxt)

Step 1. There must exist one and onl y one tree, b , with respect to the low-
level syntax for $:texU , such that the terminal nodes of tx , taken
in 1 ett-to—riqh~i order , form a $:character— 1 ist) equal to ci

Step 2. Return tx.

A keyword is an r iclent i t icri which mar* into a type specified in the high—level

syntax by exp l i ci t  r~~ l 1i r r i  w i t h u t  any metaj)raeJ(ets.

The fol lc~iinq is a )r(xluctM)n for a type that is used solely in the following

operation and is t h u s  specif i (‘~l hení’ rather than in the concrete syn tax:

$del uniter—or—ron-del imiter) : : rdel imiter)
I $ ron—del irni ter)

Opera tion: high—level -parse ( tx )

where: tx iS (1 ttext)

result: a $ uroqram)

Step 1. Let t be a ~ lel imi tar-or—non-del imi ter- 1 ist) which contains a cc!’?
• of the ~de1imi b’r) and $non-(lei ]Jnl ter) a~~~onenth of tx in exactly

the ‘sane order.

~~~


_ -

41

Step 2. Delete fran t any ~delimiter) containing a “$“. This mt~ t rot ca~~et to be deleted.
Step 3. Let nt[iJ, i = 1,.. . ,n be the ordered list of nodes which are the

iimdiate arponents of the ~de 1 imi ter) and ~non-de1 imi ter) nodes of t .
Step 4. There must exist one and onl y one tree, ht which is a cxrplete tree

with respect to the high-level syn tax for $progr am) such that ht
contains terminal nodes rtht[i J 1=1,. . . n and there is a one— to-aie
correspondence between ntf i] and nht[i] as specified by Cases 4.1
through 4.3.

Case 4.1. nht[a] is a keyword.
The rode nt[iJ nust be an identif ier) containing the s~~eterminal s as the characters appearing in nht[i].

Case 4.2. nht [i] is an $:identifier) or $constant).
The nodes nt[i] and nht[i] must be of the sane type. Repl ace
nht[i} 1y nt~i].Case 4.3. nht[i] is a ron-bracketed type other than a keyword.
nt[i] and nht[i] must be equal .

Step 5. Return ht.

9.2 Application to the Running Ex~~~ 1e

~~~ Parse Phase of the Translator is i l lustrated, first by taking part

of the character representation of the Running Exampl e through the low-level

parse and then showing the build ~~ of the entire program. Figure 7 s)~~~s

the situation at Step 1 of translaticn-parse-ithase. The section of the

$character-list) , ci that corresponds to:

IF Y ThEN X = 2*Z + 1;

is sIx~in with each character classified as a letter) , $ digit) , or $del imitier)

acoordiug to the syntax for characters LL11.

~d~aracu~r-1 i~ut~

1 1 1 1  r r i i ’  1 : 1  J I I J  l i i i  i
4~t~ ~~~~ ~~~ ~ ( -

~ ~
- ‘

~ ~~ ~~ rd ri , r(~
), re! ~~~ re~~ re~~ re! rc~~ re!

I I  I I I I I I I i i i i I I I I I I i I
U~i ~i•) tA) r•! rLA~ r ’.! IT. ) II .) fT.! V’) fT fr~

. r .
~~ r~~~ ~fl! ~‘) fT.! i-’) ~o! ~‘4 WI

I I I I I I I I I I I i i i i i I i i i I
I F $ Y $ T r N $ X ~ • $ 2 • 1 $ + y 1

~ I repr’~uenL9 rd~rW-t ,-rI. fT. ! n r,- nt~u I1ett~r) ,  ri’) rpr ent~ Cd ij it) ,

~~vI 4) ru~ r-.’n t~ ~~.T imi

A ~~ *en co~i~~-1tnvj i m p  ~rkij c-~utL~u the miss ion of or~ ~ r~rr na!~~.

Figure  7. Part of the rcharacter— l ist) repres enta ti o n o f the
Running Example.

The result of apply ing the operation low-level-parse to this $ character— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


42

list) is to obtain the ~text) tree which co~~ists of a rdei imi ter_pair~

list) as st~~ n in Figure 8. The section of 4 text) that is shown there

corresponds to the sai~ section of the $~character-l ist) that was s1~~ n

in Figure 7.

The operation high-level-parse constructs a ~del imiter-or—non-

delimi ter— i ist) that matches the 3de1 imi ter) and $non—del imi ter) ~~1~xxIents

of the $~text). The section of the ~del in~iter-or-ron-de1iiniter-l ist) that

is derived fran the part of $ text) shown in Figure 8 is s1~~.,n in Figure 9a.

In order to save space, the trees for $adentifier) and $constant) are

represented by their root and termina l nodes only. The next step is to

re~ove the blanks f ran the 3~de1 imiter-or-ron-del u ni ter-i ist) . The result of

this is s1~~in in Figure ~b. The correspondence between el a~~nts of the vector

nt of Step 3 and nodes of the 4de1 imiter-or-non-del i.miter-list) is also shown.

The high—level -pa.rsc cont.innes wt th the construction of a tree acx~ording

to the high- l evel syntax. Step 4 constructs this tree with a $ program) root

node, designated by the lcxa l variable ht. Its terminal nodes are either

~identifier) , or $:ccnstant) nodes or else del imiters. These terminal nodes

rrust match in left-to-righ t, order the nodes of the $del imiter-or-ron-del imiter—

1 ist) . Figure 1Ost~~.’s the section of the ~progran* tree ht that corresponds

to the section of the ~de1 imiter-or-non-del uni ter-i ist) of Figure 9b. The

el~~~ nth of the vector nht of Step 4 that desiqnate r~x1es in the figure are

a h3o shown.

It is at this pDint tha t,. thc distinction is made between keywords and

proqram identifiers and the specific detail s for each ~identifier) and

tconstant) are I il led in. This resul ts in the $ program) tree section s~~~n

43

I —*

I N
—~j . 1—I— I

~~
-~~~~~~~~~~

_ N
N ~~a —

~~
ri~-.

~ .~~
.~l p-.

-~~ N — -

~~ ~

.4

— — N
•1

. C

~~~~~~~~ 
C

~~

~~r-~ .
~~ 

~

t I N 5
~~ 

- 
-~~ -1—--+

~ L~
_
~f~

_
~ 

_

~ L~ 
[
~ 

—

~~~

—

~~~

~ ,
~1iif ~

LL
-

~~ ~~

~ L!~
_

~
_

~
_

~ ~~
.

j1~ Ii-1
~ ~~ I~~~ ~ P

‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

~~ ~ 
.
~~ ~~

~i I~~ ~ 
—

—

I .~i ~4

~— .— --‘ -. *,—
~~
..

1- I ~i I 4

I ’ ~ ~~~~~~
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

~ I 5 ~ ~~~ L~!_
~~
__ ..

44

a
-~~ a

—s— — .- I

-i ~
—}-_ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—

~~ 
I

_ I ~~~~~~~~~~ 
I -

1- ~~~ i —~ Ii
__ I;

__ I I!
I —

‘~~

——
-
~~

—“ 
L

—i——i— -- 1-1 —;~—~ Hi ~;
~~

_ _  

iii F
4 - -

~ ~~ 
—

~~

__ _

_ 
- I -

~~

—; i_; 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- ,
~ —-~

-.--- -—
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  -. -

45

_______________•.

~

d*

~~~~

I

-

~

~~ J 4 .A
1~

I
B- —
B

i. ,—, 4-.’

f
I

- -

46

in Figure 1]. This is by the three cases of Step 4. Case 4.1 applies

where an el ~nent of nht designates a keyword. For ex~ tpi e nht[15j i~ signates the

keyword IF and nt[15] designates an ~identifierP containing IF. Case 4.2

appi ies where el e~ients of nht designate ~identifier) am ~constant) nodes.

For ex~ ip le , nht{18) designates an I~identifier) and rtht[20) designates a

I cons tanti . For these nodes, the $progran) tree is cx epl eted by cowing

the details fran the ~delimiter-or-ron-del imi ter-liSt), in these ~~~ cases ,

copying the sybtrees of the nodes designated by nt[183 and ntI~20] respectively.

Case 4 . 3 ensures a match between dcl irniters, for exaiple nht[22] and nt[22]

toth designate an asterisk.

~~~ ~program) tree shown in Figure ii is a section of the o~tpl ete concrete

progr~ n of the running exa~~l e • ()~oe it has been constructed, the $:progranl

tree is attached to the 4translation-stat& as indicated in Figure 12.

10. ThE A~~TRPCT SYN’~~X

The abstract syntax deliberately bears a strong resa~b1ance to the

corresponding parts of the concrete syntax. The relationship be~~~en these

parts is intended to be intui tively obvious. The main difference is that

those parts of the concrete syntax w~~se only function is in the written form

of the program have been cinitted in the abstract syntax.

Syntax for programs

Al. <program> := [<decl aration—i ist>i [<executabl e—uni t-l ist>]

Syn tax for decl aration s

A2. <decl aration> ::= <identifier> <attribute)

A~. <a ttr ibute> <fixed> I ~~it>

~

. - -- ~~- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



47

a a

~ ~ - ~~ P . -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~~~~~~~~~~~

I
LI— 1’ ii

& è 9. ~—u ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~
-1-

I ~~—

a
U ,—

~
-

~
0

0
~1~~4J
U

--4

•
- _J~

-
1~~~_,.

-~ ~i .~
~

I I

_ _ _ _ __ _ -

~ -

“I’

48

j L~
.

~~

-

-:
~ ~

~~ I •1

-~~—~~—-~
,
—~~— i~ I

1.1

I I-
• 0

-
~~

4-

.

~

4-’

~

.;~ ~ I
—s—

:: ~ -~~

I- -I -

~~

—i—

~~

—i

~~~~I 

I

-- 

•

~~ 

-
~:

.
~ 

—
.~~
—

~~~~
——

~~
•‘

~ -~b — —4 -~~— I.
-

g~~~~~~~~ . a

~ 0 c•-1

~~~~~~ 
a

41 V ~
~ 

-
~~~~I~~~ 

.
~~~

‘

U-
—

I 

~ •- ~~~~~~~~~~~~~ —-~~~~--~~~~~~~~~ -“



49

Syntax for executable-units

A4. <executable—unit> : := [<s tatement—na~~>]
<1 f-stat~~~nt> I <singi e-stat~tent> )

A5. <stat ar~ nt—na me> <identifier>

Syntax for if -s t a terrr ?nts

A6. <if—sta tement> : <loqical —expre~sien> < then—uni t> [<e l se—unit>]

A7 . <then— unit> ::= ~~~~~~~~~~~~~~~~
AR. <el se— unit> <:uriq k—sta tr~ cnt>

Syntax for sing l e-sthta~~nts

A9. <single—statement> := <assignn~ nt—stata1~nt>
I <gotr—stht~~~nt>
I <read—stat~~~nt>
I <return—statatent>
I <write—statement>

AlO. <assignTnent—statt~~ nt> : : = <variabl e—reference> <expression>

All. <c~ to-stat~~~nt> : <executable—unit—desi gnator>
I <identifier>

A12. <read—statement> : <variable— reference-list>

A13. <wri te—stat~~~nt> = <variabl c—reference- list>

Syntax for expressions

A14. <log ical —expression> : <expression> (<og> I <no>) <expression>
I <variab le-refere~~e> —

A15. <expression> : = <variab le—reference>
I <cons tant>
I <infix—expression>
I <prefix—expression>

Al6. <infi x—expression) : := <expression> (<add> I <mul tiply> ) <expression>

A17. <prefix-expression> : := <minus> <expression>

Syntax for references

Al 8. <variable— reference> : <declaration—designator> 

~~--



50

A19. <identifier> ::=

< identifier> is defined a~ a ~symbo 1— i is U corresponding to the seqt~ nce of

characters in ~identifier) .

Syntax for constants

A20. <constant> ::= 4inteqer—vah~Y~’
I 4bit—va1u~~

An 4integer-valu&~ is ~t ~machirie-sLit~E~ t’:pe , defined in Section 12, rule M13,

that contains a sin jie e1c~m nt ~ U~ ’ ~~ t: of integers. A bit—va l~~~ is

defined in rule p112 anu wntdins or~ of the valir~s 4tru& or 4false~.

11. ThE TRANSLA’IOR (CONSTRUCTION PHASE)

The portion of the definitio n algarithm described in this section first

expands the concre te tree by appi y irig the defaul ts and then constructs the abstract

program cc~ponent ot the 4iiachine— stat& . During the construction , checks

are made for context ( j C;x~n(k~flt e; !or~ .

()jxratior~: traii~ hi ’ I t -‘~OI! ‘~~ uc I in~—pha~&’

Sti~1, 1.  1~~r I r ,nn ~1 n q ) l ( t - - - ~~ r K I ’ t1 —-— ~ Ir ~~ !,sU.
~;ti ~p ~? . ~ -r ‘orm vi I i ddt ‘~~

— i  , n~~r i-1i —- - h~r.it wns.
~ tt~ -’ ~. Ikr !orl’ r — -i ‘ 

~~~~ 
r ~ ,r H .

~t- -p 4. Lx� I ete t i - —~ t r , u , ~; 1t . ~on— -i . t t e-)- t i~y.n t ue 4zrk~ hine— state*.

11.1 F~cpanding the Concrete Tree

The operations of thi s section add con~onents to the $ progran~ cx rrespondin3

to inpiicit declarat ions, at~ril)ut(. defau l ts and the terminal retern stat~øi~~nt.

~~~~~~~~~~~~~~~~~~~
••- - — -“ ~~~

.- - - - - - —- -“~--~~ ~~~---—a---~ - - - _



r 

- 
-

~

-5 ’-

OperaUon: lete-a ncrete-pxogrw~

step 1. Perform impl icit—declaration.
Step 2. Perform attribute-defaul t.
Step 3. Let ul be the 4:unib— l ist)’ of the 4:pragram). If the right-ITost

4:e~~cutable-uni t) cx~~.onent of ul does not iin~iediately contain
4:eXecUtabl e-single-statement):

$~reb1rn—stata~~nt) ;
then append to ul

4:unit):
4:executable-unit~:

4:executabl e_single_statanent~:
4:return—s tatement)

R~flJPN
4:;).

Operation : is~~licit~-declaration

Step 1. Let ul be the 4:unit— l ist) of the 4:program).
Step 2. For each 4:identifier), id, contained in an 4:executable-unit) of ul ,

perform Step 2.1.
Step 2.1. If id is rot cx)ntained in a 4:stat nent-nane) or ~goto—statatlent~

and if there is no 4:declare—statanent) that ~~ntains id then
attach to ul

4:decl are—s tat~~~nt) :
DFXLN~~
4:decl aration-aj amal ist) :

4:declaration):
Id ;;

4:; 1.

Operation : attribute-defaults

Step 1. Let ul be the 4:uni t— l ist~ of the 4:progra4 .
Step 2. For each 4:declaration), d contained in ul , perform Step 2.1.

Step 2.1. If ci thes not contain an 4:attrthute) then attach

~-‘TXTT ) t h d .

11. 2 Analyzing r~clarations

The cper ation in this sect-ion checks that no ident ifier is declared nore

than once.

Opera tion : val ida te—concrc ti—declara tions

Step 1. The 4:pmqram)’ mu~;t not contain two or nore 4:declaration) n~~es
wfosc 4:idcn tiE ier~’ unponents are equal .

Step 2. Tt~ 4:pnx;rv4~ must not contain d 4:decl aration) that has an
$ ideiit ifier~ ti~at. i~; e~pi~l to an 4:iik?ntifler ) contained in a
4:sta U~~~nt—rtaziu) . 

--~~~~~~ -- - --~~~~~~~~~~~ ~~~~~~~~ - -



1 1 3  Bu i1d~~~~ t he Ah~ t ra ct Tree

The op erations of . l i i s  sect ion construct and attach to the abstract

<program > an abstract < executable—unit > or declaration—unit> corresponding

to each <unit > . Declarations are translated before executable—units to

fac i l i ta te  the hui1 din ~; if des igna tor nodes. Since a <gate—statement > may

con ta in  -•1 I orw a r d r e f &- r e i ~. - , i Ii *~ fina ’ operation is to resolve the statement—

name r I  er enecs  i n  ( l i t  ,ot ,)~ st ; i t e m ent > and replace them by <executable—unit—

des i i~~i I . k t  i —

O1-crat1O~i: ~~~~ --~~~~~~~Ui

Step 1. Let i’l I - uni ~. — I -~ I ~‘ eO) hu 1V’( I i the $~prograin).
Step 2. ~‘~~r ea~ h r~~ cl i :~~t. ioi i~~, h co~ taincd in ul , perform create—

abstrac t—(k!c rat~L~ n ( c l )
Step 3. For eac i 4~ -~- :-~~- ‘ : t n~~’ 

--
~~ ~~~~ ~i , -~-,utained in ul , taken in left—

to—Liyn t ordei , j y r fo rn~ on,tj ’j ct—ahstract—sta t~~ent(e u).
Step 4 . Pe r fo r- -1 Ci ) P~ 1 ~t -.: — 1 t~) : -

‘II . - ~ dc -c ~~c-

‘~~~, r ~ c t i n :  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I
~~~~~~~CH)

- -~ 1 i - - - - -~

~~~~~ ~~. ~~~~
- -
~ 

--
~~~~~ ~ ~~~ ~~~~-nI - -

~~- ~- 1 —~~‘ . Pi ’t-fonn create—identi f ier(od) to
Ii - I - i I i r ~ ,

~ te~ 2 . I f c~1 ~~~t ’.~ ’ : - ~ I IX1-d t li i~~c i t d r ~~ <f ixed> , o~heri.qise let atr be <bit>.

~ tri ~. P~~ r x ~’ :] i
~~r~

((~1- I I
11!

—
-

-
~~~t~~ r idc i t ‘:

~~ t I - -  rc I r i:- 

~~~~---- - - -~~~~~ —~~~~~~~ - -- - - - ~~~~~~~~~~


53

ç~erations for executable units

Operation: construct-abstract-statxi~x~nt (ce)

where: ce is an 4:executabl e—uni t)

Step 1. If ce ini~~diately contains an 3 executabl e—single—statanent) , ess ,
then 1 et cxs be the ij iii~ diate can~~nent of ess , otherwise let ~~s
be the iiiii~diately con tained 4:if-statanent) of ce.

Step 2 • Per form create-xxx-statenent(cxs) to obtain an <~oo—stat~~~nt), a~~,where QCS is an 4:xxx—statønent).
Step 3. Let eu be an <executab l e-unit> . Attach axs to eu.
Step 4. If ce contains a 4:stat~ t~ nt—n~~~~ then perform Steps 4. 1 and 4 .2 .

Step 4.1. Let cid be the 4:ideri tifier) i~ir~diately contained by the
4:stat~ rent—nam~) of ce. Perform create—identifier (cid)
to thtain an <identifier>, id.

Step 4 .2 . Attach id to Cu.
Step 5. Append eu to the <program) .

Operation: create—if-sta tti~~nt (cii)

where: ci I is an 4: i f— sUi t~~~ nU’

result: an <if—staW~~nt>

Step 1. let d c be the 4:lo’ji cal—expression)~ contained in cif. Perform
create— logical —expression (ci e) to thtain a <logical -expression> ,
alx.

Step 2. Let ess be the 1 efthost 4:executabl e-sir~ l e—stat~ rent) contained in
cif. Let c~~ be the 4:xxx-stat~ n~nt) contained in ess . Perform
~~eate-xxx-stat~~~nt(cxs) to cbtain an <,ooe-stat~ tent> , a~~ .

Step 3. Let aif be
<if—sta tatt~n t>:

aix
<then—unit> :

<singl e-stat~m~n t>:
axs.

Step 4. If ci f contains El.~3E then per form Steps 4.1 and 4.2.
Step 4 • 1. Let ess be the riqhtnost 4:executabl e— singi e—stata~ent)

conta ined in c i f . let cxs be the 4:oo—state~~nt~contained in ess. Perform create—) —stat~~~nt(Qcs)
to obtain an <xxx-statxs~r~nt> , axs.

Step 4.2. Attach an
<el sc—unit) :

<sing 1 e—statenEnt) :
a~~;;

to aif .
Step 5. Return aif .

~

--—-- -

54

Operations for sin9le sta tanents

Operation: ereate—ass1gri~~n t—statr~~ nt (cas)

where : car. is an 4:assigi~~nt—sta t~~~nt)

result: an <assig~~Jnt-Stat(~~ flt>

Step 1. Let id and cx be respectively the inrediately contained 4:identifier)
and 4:expression) of cas.

StEp 2. Perform find—abs t r ac t—kc I aration (id) to obtain a <declaration—
designator> , cid.

Step 3. Perform create-expression(cx) to cbtath an <expression> , ax.
Step 4.

Case 4.1. ax inr~�diately contains a <variab le-reference> , yr.
The <atL~ ibut~-:-contai vi € -d by the <declaration> designated by
dd nous t ~~~~ Uie <aLtxibute > contained by the <declaration>
designated i,y the <declaration—designator> of yr.

Case 4 . 2 . ax inoiu ~ iiatc l ; contains a <constant>, c.
If c cuntainn in 41.nL qer—va1t~ 4 then the <declaration>
designa ted by ¼1d must contain <fixed>, otherwise it must
contain <bit> .

Case 4 . 3 . (cJ t~~r~Tse) .
The <~declaration ’- dcsBjnated by dci must contain <fixed >.

Step 5. i1~turn an
<ass~ gu ru t-—~ : ta bic ~ nt> :

<v ari az d. —n ? fmcnce> :
dti;

ax.

Operation: create---~joto- :~ta x -r c i -n t . (cqs)

wher -: ~~~~~
J .5 ~

- - t c — ’~tatacent)

res l I:; ~J(cb —s t at ‘I1~ - ‘i t >

StEp 1. Let cici be ii - -~ i~ k i i 1 1 I i ~r1~ con Luned in cqs and perform create—
itk2nhif i c - r (ci c) ¶n O~ ~~ ni rn ‘~rdent i f ie r> , id.

Step 2. !~eturn -~~

~ U,—:,t ~ c Ii -cc v i t)
i t ,

Operation: create—r 5tattinent (crs)

where : Cr:; I~; a ~read—stat(1TuntP

result: a ~ri - 1—: .t ~tt~~nent>

Step 1. Let ars h a - r (~d(i—s La ti vTt~n t> .
Step 2. Let idi be the 4: identifier-ca’rna i ist) of crs.
Step 3. Fbr e~~h ~j dent.i fipr) . , id , of idl , taken in left— to—ric~~t order,

per form Steps 3.1 an’ I I . 2 .
Step 3.1. Perform fillcl— ah s tr&a- ~k?cl ara tAon (id) to obtai n a

<declaration—~k-~; ign.otor > , dci.
Step 3.2. A~~er~ I <var iah 1 e- ref ererce>: dd; to ars.

Step 4. E~ turn ars.

-‘I’

55

Operation: create.-return--stataIen~ (crs)

where: crs is a 4 return—statanenU

resul t: a <return—s tat~ i~ nt>

Step 1. Return a <return—stat~ i~nt> .

Operation: create-write—stataTent (cws)

where: cws is a $write—stat~~~nt)

resul t: a <write—stat~ nent)

Step 1 • Let aws be a <write— s tat~~~nt> .
Step 2. Let idl be the $ identlfier-covm~a1iSt) of ~~s.
Step 3. For each $identifier), id , of idl , taken in left— to—right order ,

perform Steps 3.1 and 3 .2 .
Step 3.1. Perform find-ab strac t-declaration C id) to d.tain a

<deci ari tion— lesignator> , dd.
Step 3.2 . Append <va r iable-referer ce>: dci; to aws .

Step 4. Return aws.

Operations for expressions

Operation: create-logical -expression (clx)

where: clx is a floqical-expression)’

result: a <loqical—expression>

Case ~~. clx iniwxliately contains an ridentifier)~, id.

Step 1.1. Perform find—abstract--declaration (id) to thtain a <decl aration-
designator> , dci. The (declaration > designated by ±1 must contain
<hi t>.

Step 1.2. P~E~irn <logica l —expression> :
<variab l e-reference> :

dci.
Case 2. clx has three ccmpcz-~ents, cxl , op, and cx2 , in Left to right order .

Step 2.1. Perform create-operand (cxl) to obtain the <expression>, axi.
Perform create-operand (cx2) to obtain the <expression> , ax2.

Step 2 .2 . If q~ is then let aq- be <~ j > , otherwise let
~~p be <ne>.

Step 2.3. Return —

<1ogica1-~~cnression):axi
aog
ax2.

- ~~~~~~~~~~
.

~~~ - - __________________ slIll~



56

Operation : create-expression (cx )

where : cx is an 3expression)~, $expression-twoi~, ~expression-one)~,or $nrirai tive—expression).

result: an <expression>.

Case 1. cx is an $ expression~ , ~e pre ssion—t~~ )~, or $ expression-one) and cx
has only one cannonent , cxc.

Perform create—express ion(cxc) to obtain an <expression>, ax. Return ax.
Case 2 . cx is an $:exnress ion), or 3expression-t~.x* and has three cx~~ onents,

cxl , copn , and cx2 , in left-to—right order .
Step 2.1. Perform create-operand (cxl) to obtath an <expression> , axl.

Perform crea te-operand (cx2) to obtain an <expressicn>, ax2.
Step 2. 2 . If cxxxi is + then let aope he <add> otherwise let aope be <aiultip ly>.
Step 2.3. Return an - ________

<expres sion>:
axi

ax2. -:
Case -3. cx is an ~expression-one) wi th ~~ ccr~onents , c~~n and cxl, taken i. lef t—

tn—righ t order.
Perform create- operand(cxl) to obtai n an <expression> , ax. Return an

<expression>:
<prefix—expression> :

<minu s>
ax.

Case 4. cx is an $ cxpre~-;sion--ono) with th ree l~ xxients, ci, cxl, and c2, thken in
left— to—right order.

Perform crea te-nnerand(cxi) to obtain an <expression>, ax. Return ax.
Case 5. cx is a ~nrimi t Lvc—ex -- ressj c)~) arv i contains an ~identifier), id.

Perform find—ab str a - t - c c l a r a t J o r~~id) In obtain a <declaration—designator>, dd.Return an
<Cxi cr I on> :

-~var iahl n-— ‘eI erc-nci >

3d.
Case 6. cx is a $nrimi tive-expressjon) and contains a $ consthnU , c.

Perform crea4- r— cv~un 1- rkn t- (r) to obtain a <constant> , ac. Return an 
I n ) :

Oper ation : eate-o~~r arv1 ( cx)

where: cx is an ~cx~)n’S.sion), ~expression—~~o~, ~e~~ressiorp-one) ,
or $prii-’ti tive—expressj on) .

result: an <expression>

Step 1. If cx is a ~pri nti tive—c~~ rcssion ) then nerform Step 1.1.
Step 1.1.

Case 1.1.1. cx ini~~diaielv contains $ identifier), id.

Perform find-abs tract-dcclaration(j d) to obtain a <declaration-
(lC’Siq rIa tor> , (3d. The <declara tion> designated by k1 must
contain <fixed> .

L



_ 
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~~

-
~~~

--‘---- -~~~~~~~~~ - -~~~~~-~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

57

Case 1.1.2. cx iimdiately contains $a,nstant) , a~.
!L1~~ ~~~~stant), a~ must not contain $bit-dx~ t~.

Step 2 • Perform create-expression (cx) to obtain an <expression>, ar.
Return ar.

IJtil ity operations

Operation: create—identif ier (cid)

where: cid is an $:identifier)

result: an <identifier>

Step 1. Return an <identifier> wFose concrete representation is the sane
as that of cid.

Operation: find-abstract-declaration (cid)

where: cid is an $ identifier)

resul t: a <declaration-designator>

Step 1. Perform crea te-ident ifier (cid) to obtain an <identifier> , id.
Step 2. Let dl be the <declaration—list> contained in the <program> .
Step 3 • Let dd be a <declaration-designator> for the <declaration

containing id.
Step 4. Return dd.

Operation: create-~~nstant (co)

where: cc is a $:constant).

result: a <constant>

Case 1. cc invediately contains $bit-constl, be.
If bc contains lB then let abv be 4true*, otherwise 1 et abv be
4false4 . Return a

<constant> :
<hit—const> :

abv.
Case 2. cc imediately contains a 4digit—list), d l .

- - Let iv be an 4integer—val ue* ~~ual to the val ue obtained by interpreting
the ~digit) s of dl in l ef t-to-right order as a decimal integer.
Return a -

<constant>:
iv. 

~ -~~ - - - -~~~ --~~~~~~~~~~~~~ 



- - — ---~~~~.--~-.---— -- --- - ---~~- - - - - -  —~~--- -- - -- -- — -- ---- ---‘-‘-

58

Operation for ~~to cleanup

Operation: cxxi~ l ete-p Ins

Step 1. Let eul be the <e~~cuthb1e-unit-l ist> inrediately contained in the
<program>.

Stcn 2. There must net be t~~ or nr rc equal <staterent-nane> ~~x nentz of eul .
S top 3. For each <goto-stat~ mDnt> , g, contained in eul perform Steps 4.1

throtxih 4.3.
Ste~i 4 .1. Let id be the <identifier> contained in q.

Step 4 . 2 . There must exist in eul a <sta t~~ent-name> , sn , whith contains an
<identifier> cqiial to id.

Step 4 .3 .  Repl ace id by the <executabl e-unit-designator> that designates the
<executable-unit> contairarrz sri .

11.4 Appl ication to the Running F~~ nple

The first stage of this phase of the Translator is to conplete the

concrete program by constructing a DFELARE stata~~nt for any variables that

~~re net declar ed in the origina l progr am. The variable X in the running

exarnpl e was rot dccl ar ed and a dccl arat ion wi th no specified attribute is

constructed for it. The FIXED attribute is ti-en included in any DEX2LI’.RE

sta ti~~ nt without n attyii,utt’ sp:’ci.1 ied . The FIXEI) attribute is therefore

to t rio ~- 1i -cI ,ti ~t ion~ lrc:  X jus t constructed and to the $:declaration)

for Z w1 id~ had no ~t~ c ibuLv ~~~~~~~~~~ ~r Lhe source program. Finally, if

there is ~o fi:u l REIIJI(N sta torn nt  rn the program, one is constructed and

appended ‘o ~io bU ~: t — ) J S t ) .  -rh: n- : t of canr ~1etiri g the concrete program

for the Runninq F~campln is st-own in Fiyure 13 as a partial ~program) tree.

This may be canpar ect w i t h  the partial tree shown in Figure 12.

The second stage is the construction of the abstract prograi~ fr~~ the

concrete program. !fl <progr am> for the running exan le is shun in Figure 14.

This will  form the <pr ogram> cxlnponent of the 4iiachine-stat& during the

interpreta tion chase of the definition . In Figure 14 , uniqi.e-nau~s are

represented as we have dene before by neans of circled nizbers • Des igriators

are s)um by arr~~s pointing to copies of unique-nan~s.

-

~

--

~

---

~

---- -- -.

~

-—- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- -fl --

~~~~
-
~~~~~~

---- — ---~~~~~~~- -~~~
—14

59

a

—F
~

-

a

—~~~~~~ -~ ~;F ~
-
~~—

.~i -~ -
~

I— .i~ I
~~

~~ ~
_1 u1_J

-
~

I - -
~~h —~ a

.~ ~ F c~- —~1—~~—~ — -~

~~~~ 

-

~ ~~~~~
-~ 

,
~__J_._~ I—.

.- t- .~ z~

—
-
~
—

~
— ~: — 

~~~
__

~~
-~

~
‘-4

-
~~

_-Li~
I -

~ ~~ ~~~~~~U_~~~
_

~~

-

~~~~

—- --- - —-- 
~~~i

_
=~

- — -
T : -

~ -r--~’~~~
- -

~~~~

60

A
A ~~

~

~J

~~ ~

~ ~: J I
A

F F —

~~ 
-
~~ ~ 

-~ .
-J

IDA 
*C A w

A

A ~~ ~~- C
C ~. -. —_____________ — C

— —:i-- I — -~ C
•1 ~- ~- —1— ——-- &

- .
‘

~ ~ 
A -~~- - - ~- >1 4-’

~
— ~~-.- —~~ 0

I - -:; 4’

~ ~

,~ ~ -~ ~-

~ ~ ~ 
~~~~ -~ —1 —

~~
—

~~~
——4 —

~~ a
-: ~ ~ :4 ~ 

-
~ ~~

- I - 
-: 

~ 
c — ’ ) ‘7

- — - — — -H  I..
‘- -~ 0

-

-~ ~ 
g

S- I-
- 0.

~ 4’
u

> I0
_~1 I V -~ I-

5, 4-’_
~~~I~~~(‘ I ~. ~

~~~~~~
-.4

~~ I~~I ‘tI —
LL.

-I
A

• 

~

(. ,)

~ L-;i_h. .,.

-----

~

- 
~~~~~~~~~~--~~~~~~~~-— ~-~~~~~~---~~~~~--~ --


r ~~~

- - - - -

~~~~~~

61

12. ThE ?~~ HINE)-S’1W1E SYNTI~X

This part of the 4iachine-stat&~ syntax rul es describes the interpretation-

stat& . The productions for 4ladLine-state~ and translation-stat&I, rules Ml

through M4, ~~re given in section 7.1

MS. 4interpretation-state~. : : = [4program-state~] -4datasets+

Syntax for program-state

MG. 4program-state4~ : : = proqrarm-control -~ 4sthr~~e— state*

M 7. pr peram-contr ol -~ : = -<executa) 1 c-un t-desiqnator~ -(operation- 1 is t~
MS. 4storage-state~- : : = -4storage-directory* -(alloca ted--sthrage4

M9. storaqe—directory+ :: storaqe—directory—entry— l ist~

M b .  storage—directorr—entry ) : : = <identifier> basic—value—designator*

Syntax for allocated storage

M u .  4a1 located—storage-~- : = basie—valt.e—list*

1~il2. basic—value+ : := 4inteqer—va1t~~ I bit—value* I -‘Eundefined*

M 13. 4inteqer—valu~~

The termina l component of an 41nteger—va1ue~ is a single element

from the set of integers.

Ml 4. 4bi t—va 1 ue* : : = 4true-~ fal  se*

Syntax for datasets

M15. -4datasets+ : : = input-dataset3 -4outnut—da tasot~
M16. input-dathseU- : : -4dataset* -(current-position4

M17. 4output-dataset~’ = 4da taset~
M18. (dataset~ ::= -(alcha4 [4datase t-va lue-list~J 4c~reg&

M19. 4current—position-~ : = 4designaInr~
M20. 4dataset—val oe~ : := integer-value~ I ~~ it-value~



62

13. THE ThF~ERPI~~TER

In this section , we describe the portion of the definition al gorithm

that defines the meaning of the $ progran* by interpreting the correspondi~,g

<program> constructed by the translator .

1 3 1  Initial ization

First the data to be input is obtained and the -(program--state)- is

initialized.

Operation : interpretation-phase

Step 1. Let du be a
dataset)-:

4alpha~arcqa-).
Step 2. Obtain , fran a source outside this definition, information to be

used for input , cons truc Led in the form of a -(basic-val ~~ — 1 is t) , bvl.
Sten 3. If hvl exi s ts then attach ti-i T to ds. Let d~ be the <designator> that

designates the -Ealpha-~ of ds. Let dsi be
-(input--da thset4 :

ds
-(cur ren t—çosi tiori*:

dci.
Stcj~ -1. Perform i.nt -rpret (dsi) -

Operation: int i~~~t ( d u i)

wher’~: dsi is an 4in l: t— da tas. - t-)-

~ tP1’ 1. Let (J5tJ be
4output—dataset~~4(Lj tasct -*~

(a

~;tI:r) 2 . /~tti1CtI to t t ’  rn 2I1ifle—sta t~4 the tree
4 tnturpre t tion— statc9 :

Edatasets)’:
IJ~;J(ISO.

Step 3. Perform activa te—T)toqram.

- - -- -
~~~-——------~~~~~~~~~~ ~~~~~~~~~~~~~~~~ --- -- - - - -~~-


~‘1~~

63

Operation : activate-program

Step 1. Let etkl be an <executabl e—unit-designator> that designates the
first el~~nent of the <executable—unit—list> of the <program>.

Step 2. Attach to the -(interpretation-state)- the tr~~
program—state)-:

program-control)-:
eud;

-(storage--state) :
storage-direc tory-)-

4a1 located—storage)-.
Step 3. For each <declara tion> , d , perfor m Steps 3.1 and 3 .2 .

Step 3.1. Perform allocate to obtain a -(basic-val~~ —designathr-)-, bvd.
Step 3.2. Let id be the <identifier> of d. Append

Es tnrage-directory—entry4-:
id
bvd.

to the -(storage—directory)
Step 4. Append an operation4 for ~Jvancc-execution to the -(program-con trol)-.

~‘bte that the execution of Step 4 of this operation brings into existence the
-(operation—list)- of (program-control)-. For as long as this list exists, the
righ tnos t operation4- is the active one and the execution of the righ thost
-(operation)- of the — (opcration-l 1st) of -(control —state-)- is suspended. It wil 1
ranain suspended un ti l the -(program-control -)- is deleted by the execution of
either the execute—return—s tatanerit or abnormal — termination operation.

13.2 Stat~ nent Interpretation Contro l

These operations control the seq~~nce of statanent interpretation.

Operation: advarx~e—execution

Step 1. Let cu the the <executable—unit> designated by the <executable-
unit—d signator> of the (proqram-state) .

Step 2. If cu iniwxliately contains a <sinqle— statai~ nt> , ss , then let
St be the iiiinediatc ccu~x nent of ss. Otherwise, let St be the
iITI rv-(h ately contained < i f — s t a tarun t> of eu.

Step 3. Perfonn exccute—xxx (st) where “xxx” is replaced by the se~~~n~~ of
syrtol :; formninq the type of st.

Step 4. (b to r;tep I -

Operation : normal—sequence

Step 1 • Let eul be the <executable— unit— l ist> . Let cu be the <executable—
unit> of cu 1 that is d -sigriated by the <executabl e—uni t—designator>,
cud , of the (proqraz :~— st ~lte-) .

Step 2 Let cud desiqnd tc the <executabl e— unit> that inrnediately fol l~~s
(?U in eul

-~~~~--‘--~~ —~~— - - •.-—- ~~~

64

13.3 Interpretation of Stat~~un ta

There is an c~eration for each statcrunt type .

Operation: execute- if—sta tøiun L (st)

where: St is an <i f—sta t~ rent>

Step 1. Let le be the <logical—expression> iinnediate cxxnronent of st.
Perform eval uate—logical-expression (le) to obtain tv.

Step 2.
Case 2.1. tv is 4tri~~)-.

Let ss be ~~~~<sing l e-stata~~nt> cxxipor~ nt of the < then—unit>
of st.

Case 2.2. tv is (f a l s e) - .
I f st d oes nct contain an <ci se—unit> then perform ncrmal —
sequence and terminate this operation. Otherwise , let ss
be the <sinqle—statenvnt> can!x nent of the <el se—unit> of st.

Step 3. Perform execute—xxx (ss) where “xxx ” is repl aced by the seqt~ nce of
symlxd s formi ng the type of ss.

Operation: execute—assigrmnunt—sta t~ runt (st)

where: st IS an <assic iient—sthtarent>

Step 1. Let xp be the <expression> of St. Per form evaluate-expression(xp) - -

to obtain a basio’-val ue-)- , by .
Step 2. Let yr be the j iniudiatel y con taiued <variable—reference> of st.

Perform assign (~’r , by) -
Step 3. Perform 1-,~~~ut.-rmc~.~.

Operaticz~: execute—~~to-Stat1sTun t (s L)

where: st is a <qnto—statt~~ nt>

St~~ 1. Repl ace the <executahle— un i t—des ignator > of the -(program--state)-
by a copy of the <execut able-unib—designator> of st.

_ _ _ - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~—- -~~-

65

O~~ration: execute-re&i—statønent C st)

where: St is a <re&1— staa~~nt> .

Step 1. Fbr each <variable-reference>, vr , of the <variable-reference-l ist>
of st, taken in l eft—to-right order perform Steps 1.1 through 1.3.

Step 1.1. The -(dataset-val ~~~
— list) , dvi , of the -(input-dataset)- rrust not

be empty. If the -(current-pesition)-, cp, of the input—dataset*
designates ~ p~~)- then let dv be the first el ønent of dvi ,
otherwise le~T~~~be the el anent of dvi that iim~diateiy
fol l cA.~s the one designated by cp. This el~~~ nt must exist.
Let cp designate dv.

Step 1.2. Let d be the <declaration> designated by the -c declaration-
designator> of yr. If dv contains an (integer—value)- then
d must contain <fixed> , otherwise d must contain <bit> .

Step 1.3. Perform assiqn (vr , by) .
Step 2. Perform non al-seq~~nce.

Operation: execute-return—ste taiunt (st)

where: st iS a <return—stat~~ent>.

Step 1. Del ete the -(program--control)- fran the ~~~~hine-state)-.

~~te that this causes the rightnost -(operation)- of the -(operation-i ist)- in

the -(control-state)- to beccine the active operation.

Operation : execute—wr ito— s ta t~~ui it (st)

where: St 19 ~i <W r i t e — st at f i n e nt >.

Step 1. F~ r each <var iabh—r ’~b -n-i ic ’e> , vi- , of the <varithle— referez~~~--1ist>
of st , taken i n i f t — t e - -m oSi~ u r t k ’r , per form Steps 1.1 thrc*~gh 1.4.

Step 1.1. Perform ev.i lr iati—v u ..tb 1e-m ’-~erence (Vr) to obtain a
I~~sic—vdl — (k~sI(;r r Itor , hvd.

Step 1.2. Perform obtain—basic-va I i~~ (bvd) to obtain a -(basic-val tE)-,
1w. Let v be the ij ivt-thato ca pcment of by . Let dsv be
a -4dataset—val~u+: v.

Step 1.3. If the n~grber of cliinents in the 4dataset—vahE—1ist~ , dvi ,
of the utput-clata sc- t)- is greater than sane iztpl anentation-
defined nurber , then perform abnormal--termination.

Step 1.4 Append dsv to dvi .
Step 2 • Perform normal s~~;uencc.

-~~
_

_ _ -
_ _________

13.4. ~ pression Eval uation

The folla-iinq operations per f orm the evaluation of ex’,ressions and

refere nces.

Operation: eval uate—iogicai--expression(e)

where: e is a <logical—expression>

resul t: 4) or 4fal se)

Case 1. e in~nediately contains a <variabl e—reference> , yr.
Perform evaluate—variable--reference (vr) to obtain a -(basic-va l ue—
designator)-, bv’d . Perform thtain-basic--~ia1 ue (bvd) to obtain a 4basic-va1ue~- , by -
Return the u i-mediate colrpnent of by.

Case 2. e imediately contains ti~~ <expreszion> canponents, el and e2.
Step 2.1. Perform eval uatc— exprcssion (ci) to obtair a 4basic—val ue)-, bvl ,

and evalua tr ’—cxprcssion(e2) to obta in a -(basic—va l ue)-, 1w2.
Sten 2.2 .

Case 2 2. 1. e inTTi~diatelv containz <€rt > .
If bvi = bv2 then return trueçotherwise return 4fai se) .

Case 2 .2. 2. • l ’ tel ~~
If bvi — bv2 then re tur n false*,otherwise return

Operation: evaluate—expression (e)

where : e i~; a <f i x ed —c mression>

result: b -41~~~jc-- ’alue-~
—

Case 1. e iiir~ .1iatvly cont;~~’~ ; a <v1r Jdr ---ro f erence> , yr.
Perfor m ovah,iatL -- -Ja r ial h- - r ’f f - r r ’ 1~~L :-(v r) to obt ain a -(basic—val ue—dcs iqnathr)-,
}-
~~~d~ Pr’,rforin o l ? i  i n— ) “ ; i r — v a h t u ~(lwd) to nbt-ain ~ 4bas~ e—va 1ue~~, by. Return bv

Case 2. r’ j n~~ ’, Ij - i t r - l~, ~~~~ Li- I n~ , C.
T1? t by be a 4}.~.~;i i -— —’ - i i u ’ — ~: v -i’ ’ ’, ’-  ‘‘ i~ ; t—h - inrw’dia te c~ nponent of C.

Return by.
Case 3. c u i-mediately contains an < i n f i :~—expression) , ix.

Ster 3.1. Let ci an- I e-~ he the ti~ni- ini~~diately contained <exnression>
~~~rx ncntii of i x .  Perform evalua te—e,q~ression(e1) to &tain
the 4hasic—va i ii ’-~- , li-v 1 and oval uate—nxoression(c2) to obtain
the 41 ~ sic— Vii , ,r4 , -v;~ •

Step 3.2. If ix in di~’t i ’ ly contains <add > then let ir be the (integer—
val tr�)- wIose val iz~ i-s the sign of the two integer-value4
c ziqx ncn t~; of ~~ 1 and bv2 . Oth~rwise let ir be the ~integer—
val i~ - whenc val ~~~~‘ the ~rtx1uct of the two -‘(integer-value)-
cXITI~Y.rK ’n t of 1 ‘vi an-) 1 i-,? .

Step 3.3. Fl the r~~mi tIRI ” V I r excer’d~ an implementation—defined
nay i rmI1, t-h.- n ~(‘t r ~w’ an 4i n ’-c~~er—va l ue)- ~-;ith an imnimentation
clef j ri-ed ‘M In, an- I ~ -t i~ ria l 1-~ ~ ‘r ‘ or—n abncrma i —termination .

f tcp 3.4 Return he ic—v ,thv9 : i .

L_
- - _

67

Case 4. e ~ji-inediately contains a <prefix—expression>, px.
Ster~ 4.1. Let el he the <expression> iitmnediately contained by nx.

Perform evaluate-expression(el) to obtain a -(basic—value)-, 1w.
Step 4 .2. Let ir be the -(integer-va 1 ue)- whose value is —iv , where iv is

the -‘(integer-val ue)- in~nediatel y contained by 1w.
Step 4 .3. If the magnitude of ir exceeds an impl~~~ntation defined inaximtni-

then let ir be an iinpl a~nentation-defined value and cx,tionai ly
perform abnormal -termination.

Step 4.4 Return -(basic-value)-: ir.

13.5 Storage Manipulation

These two operations are the only operations tbat directly change the

state of al located-storage)-.

Operation : al locate

resul t: a (basic—value—designator)- -

Step 1. Let by be a -(basic-value)-: -(undefined)-.
Step 2. A~~end 1w to the -(basic-value-1ist~’ of -(alloca ted-storage)-.
Step 3. Let bvd be a -(basic-value-designator)- that designates 1w. Return 1wd.

Operation: assign (vr , by)

where: yr is a <var iabie—referenc~ >
by is a (basic—val ue)-

Step 1. Perform eval uate-variable-reference (vr) to obtain a -(basic-value—
designator)-, bvd.

Step 2. Repl ace the -(basic--value)- designated by bvd with a copy of by.

13.6. Storage Reference

Operation : oval uate—variabl c-reference (vr)

where: yr is a <variable—reference>

resul t: a -‘(basic-val ue—designator)-.

Step 1. Let d be the <declaration> dcsiqnatcd by the iirrnediately contained
<declaration-designator> of yr.

Sten 2. Let id be the (iden tif ier> of d. Let bvd be a cor’.’ of the -‘(basic-
val ue-designa tor)- ca ronent of t~ ~e (storage-directory-entry)- that
contains an < identifier) equal to in .

Step 3 • Return bvd.

- - ---~~~~~~~ -- --— -----~~~~ -

68

Operation: cA)tain-i~~sic-val ue (bvd)

where: bvd is a -(basic-value-designator)-

result: a -(basic-value)-

Step 1. The -(basic-value)- designated by bvd must not contain -(uudefined)-.
Step 2. Ret~~n a cx~iy of the -(basic—value)- designated by bvd.

13.7. l~bnorn& ‘I~xmination

Operation: abnormal —termination

Step 1. Perform an iii-~ l~~i-entation-defined action.
Step 2. t~ l ete the -‘(program-control)- fran the 4nachine-state)-.

The impløtentation-defined action permits the implei-~ ntation to give sate

indication to the progranmer of thc rea.son why the program is being abrormal iy

terminated. This opera tion also causes, by the deletion of the -(program-

control)-, the rightm ost -~~peration)- of the (cperation-list)- in the -‘(control-

state)- to beo me the active operation again.

13. 8 Appl ication tx) the Running Exampl e

~~ continue with our running example , ~~ will suppose that the input

file contains b~ values , the -(bit—value)-: -(true)- and the -(integer—val ue)-: 9.

Figure 15 shows the 4 i-achine-state* just before the operation activate-pro~~am

is perfoz~ied. The (current-position)- of the 4inpet’—dataset~)- designat~~ the

alçtia* marker at the start of the f i le and the -(output-dataset~)- is ~npty.

After the operation activate-program has been canpl et&1, the 4interpretation-

state)- is as s~~~n in Figure I
~~ The (al located-storage)- contains three

-‘(basic-value)- xzrVonex:ls, ~ icli- liii tia 1 i 71’d to (undef ined)-, for the three

variabl es, X, Y , and ~~. ‘l’he (storaqt’-directory)- contains entries designating

these values. The executable-unit—designatcr+ has been set to designate

- - - --

iaruwt ~~~~~~~~
-

~~~~~~~
- -—

~~~~~
—--

~~
---- ~~~~~~~~~~~

- - -‘-- -- -~~~ ---~~~~~!~~~~~~~ ~~~~~~~~ --~~~~
— ----.- -—- - -—

~~~
- - —--- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-

69

—1 ‘-
‘ I

J ,i~~ b~1 4 S.-
0.p

~ ~
i1 -~~

~~
-~~ I .;

j 9 -î
-~
— — -

~
— 1—

~

-

~

-

~
L__

~
_

~I -
~v-~ ~~~~~~~~

,,

-~ ~J ~1_

w-c

-l

_ _
~~~~~~~ - - -  ~~~~~ - -- ~~~~~~-~~

_ _

70

—
~I

1 ’

~ ;~ ~~

-

~~~

—

~~~

- .
.~
—

~~~ -j
_ 0’. —~ ~~4. _

~— n
~ t

~

_ _ _ _ _ _

T1~~~~
-

~~ L~~~~_M

-

-

-44 -I-fN-~
p

~

-

~~

—

~~

—

—

‘a--

-the

-
~~::~-

71

the first stataT~nt in the <program) (sI-KMn in Figure 14). The (program-

ocr~trol)- contains an (opera tion)- for advance-execution and this is r~~ the

active operation.

Fbi lowing the execution of the first state~ent of the <program>, the

R~~D stata~ent, the -(interpretation--state)- is as shown in Figure 17. The

(al located—storage)- has changed so that the -(basic-value)- ~~~~~nents for the

variables V and Z now contain the values read fran the (input-dataset)-. The

-(basic--value)- for X is unchanged, it is still -(undefined)-. The -(current-

position)- of the input-dataset9 row designates the value just read fran it

and the -‘(executable-unit-designator)- has been advai~~ d to the next statanent.

Figure 18 shows the -(interpretation-state)- following the execution of the

~~ statanent. The -(basic-value)- for the variable X has row received the

(integer-value)- 19 because the <then-unit> was executed since the -(basic-value)-

for V contained -(true)-. The (executable-unit-designator)- has been advanced

to designate the WRITE statment.

Execution of the WRITE statetent causes a copy of the -(integer-value)-

for the variabl e X to be appended to the (ontpit-dataset)-. Since the

(cutput-dataset)- was ørpty, a dataset-value-iist)- was constructed by the

append instruction. The -~~utpit-dataset)- is as s~u~n in Figure 19. At this

point, the -(executable—unit-designator)- designates the R~1URN statetent

constructed by the Translator. ~ tecution of this statenent causes the

program to terminate.

-~~~~~~~- -~~ ~~~~~

_

72

I.
~~

—I- i—I- j-—
~’

~ rj f ~ I
1— - I
I

4 —~--I~ ~—‘
‘fl- cA-k

~ ~~~~~~

.

~~~~~~

—

I________ 
~~~

— - — 11’~~~~t ’ I ~~ I t 4 A
-~ ~~~~~~

‘I

~ I 0)
~ ‘ L .- -~—

•
~J~ -~ ~~.3

+1
1-H ®

I
~~~~~~L~~~~~~~~~

1

V
V

.

~ 

— - ~~~~~ 



~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —-- -

~~~~~~~~~- - ~~
----—

~~~~~~~~
‘- ---,,,- -—-—-

~ ~~~~~
-.- -—

~~~
--

~
—--,-—-----------------

~
-
~~~

--—--- - ----- - —

73

~ ~1 -IHi—
—

~~

—

~~

t 0)
— 

- -c

~

3 
®

~~~~

L I
I

_ _ _ _

II
I H: fl-I

®
~~~~~~ I I A

~ N I- ! A

- ~ - ~~~~~~• -
~~ ~~.2 -~.3

i_ -I

I

N

~ 
A

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - -

74

-Ii

I
!—~— -

~4—~—~ 3

3,

I
~1~ -i—!

— •
~
_I_

~I
•

~~~~~ 

-

~r — — c

~ -:
~
—

~ -
—--

~

~~~~

3 ~ t .
~~

~ ~
—

~~
--—.

~ l t

~~~~~~~~~~~~ S- s-

I
® ®

3 -
~~
--l •

~~~~
® .

~1

_ _ _ _  

r
I ~~~~ 11

3 ~ ~ ~i1~_ _ _ _ _ _ _ _ _  

-~~—~~- -_
~
_p ®

.--~ ~ -~~ 
.

~ JJ
• Q. -!~ 

V 
~

- -
~ b ~ - L~_L__I.
C V -N
~i

~ — t

-
~~

—
~~~~~ 

U

-

• HA
A

~~

_
- - - -

1
14. Postlude

This definition of the trivial language SAL has used the definition

technique of BASIS/i; however , we have only introduced those terms and

concepts that were required for specif ying this small language . The

reader who is using this as an introduction to BASES/i will find that ,

because of the much greater complexity of PL/I , some additional constructs

have been needed for its definition . Nevertheless , the mechanism used here

is essentially the same as that used BASIS/i and a readin g of the first

chapter of BASIS/i will serve to introduce the additional features of

the metalanguage.

The BASES/i metalanguage Is sufficiently powerful to give formal

definitions for any sequential programming language , such as ALGOL 60,

SNOBOL , LISP , or COBOL . However , since tasking is not considered in

the BASIS/i version of PL/I, the method in its current state is not suitable

for defining non—deteriiinistic or parallel programming languages such as

ALGOL 68.

We would like to thank David Beech , John Kelly, Henry Ledgard , and

Peter Wegner for their help ful comments on previous drafts of this paper .

-

~

- —- • - -

~

-

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~~~

76

15 • El

[Al] ~ko, A. and ul iman , J. The Theory of Parsing, Trans l ati~ n and C~~piiing,
Vol. 1 & 2. Prentice—Hall , Inc. , Engl e~~od Cl iffs, N. 3. 1973.

[A2] Al her , K., 01 iva, P., and ~Jrsch1 er , FL , Concrete Syntax of I~~/ I ,  IBM
Latoratory Vienna, !I~chnical Report ¶~R 25.084 (June 1968) .

[A3] Alber, K. ,  and O l iva, P., Translation of P1~~I into Abstract ~~xt, IBM
Laboratory Vienna, ‘i~chnicaT Report TR 25.086 (June 1968).

[A4] Al len, C. D., Beech , D., Nicholls, J.E. , and I~~ie, P ., An Abstract Interpreter
of Pt/I, ‘1~chnicai Note ‘I’N3004, IBM United Kingckmt Laloratories Ltd, 1966.

[si ] Backus, 3 W . , “The Syntax and S~ nantics of the Proposed International
Algebraic Language of the Zurich PLYr-<W’t4 Conference” , Proc. International
Cbnf. on Information Processing, UNES(X) (1959) , pp125-132.

[B2 ] Beech, D., Bowe, P., Lamer , R.A. , and Nicto~ 1 s, J. E., Con~~ete Syntax of
Pt/I, Tt’chnical Note ¶Th13001, U~4 United Kingcbtt L.alDratories t.td, 1966.

[B3 ] Beech, D., Nici-ol is , J .E . , and Rci~e, R. ,  A P14/i Translator, ~~chnica1 Note
TN3003 , IBM Uni ted KingcIxn Laboratories Ltd , 1966.

[B4] Beech, D., I~~~~, R., Lam e r , R.A., and Niche 1 is, J.E., Abstract Syntax of
P1/I, ~~chnicai Note Th3002, IBM United Kingdcxn LaboratorieS, 1966.

[B5] Beech, D., “A Structural View of Pt/I” , Ccitputing Surveys 2 , 1 (March 1970 )

[B6 ] Beech , D., and Marcotty, M., “Unfurl ing the PL/I Standard”, SIGPLAN
Notices 8, tb . 10 (Oct 1973) , ~p12—43.

[B 7] Beech, D., “On the Defini tional Method of Standard P1/I”, In Conference
Records on the Principles of Proqraming Lanqu~~es, Boston, Oct. 1973 , po87—94 .

[El ] Elgot, C.C., and Robinson, A., “Ran kv~-access stored-program machii~~~,
an approach to progra~ining l anquaqes” , Journal of the A~ 4 11, No. 4,
(1964), pp365—399.

[E2 ] Europoan Ccrputer Manufac turcr s~ ‘-~sDc 1iation and f~iterican National
Standards Institute, PL/I BASIS/I-I ~ Publ ished as ~~R X3. 53, ~~erican
Nationa l Standards Carriittee X3 , ~~~hinqton D.C. 1975.

~ ;i ( arwick , J.V ., “The definition o~ prograrmti rrj l anguages by their
1 ors ” , In: Steel , T. B. • Jr., Ed. , Formal Largua e t~scription

- - j & ~~s for Cat!)Uter Pn tr~~m~i~~j ,  North-Hoil and Pubi. Co., ~~~terd,~~~
‘fl~~~, -i r ’1 1~— 147 . 

—

• ~~~~~ 
- ri 1(k~1~ p t~~- t i,’~~~r i Al gol 60 and thurcth ’s Lairbda—

- - - 
- rr ~i . ~ t - ~~~11 8, No. 2 , ( 1965) pp89-101.

- - ~ . . - 
~ -f l  -~~ 1 ~n1 ~0 and C~turd~ ‘S Lazrbda—

P ~~~~. ~~, (1965 ) , pp15 8—165.

- . • ‘ -  -‘ -~~~ 
- -
~~. ,  ~ i r ,

— --~~~~~~~~ •- -- ~~~~~~~~~ - - - -



~

- 
- -

~~~~~~~~ - — ~---—,- - -w - ~~~~~~~~~~~~~~~~ “~~~— - - - --~~ - - -

- 77

[L4] Ltx~as, P., Laber , K., Bandat, K., Bekic, H., Oliva, P., Walk, K., and
Zeisel , G., Informal Introduction to the Abstract Syntax and Interpretation
of PL/I, IBM Laboratory Vienna, ¶Dechnical Report !1~ 25.083 (June 1968).

[L5] thcas, P., Lauer , P ., and Stigleitner , IL, Method and Notation for the
Formal Definition of Programing Lar gu~~es, IBM laboratory Vienna,
T~chnica1 Report ‘ZR 25.087 (June 1968).

[Ml] M~~arthy , J., “A forma l description of a sil set of AL(DL”, In: Steel , T.B. , Jr.,
Ed. , Formal Language Description Languages for O~tputer Prograirtting,
North—Holland P~t i . Co., Amsterdam, 1966 , ppl— 12.

[M2] M~~arthy, 3., “‘I~ .sards a MathGnatical Science of (Yi~putation” , In:
Proc. IFIP Cong. 1962, North—Holland Ptti . Co. , Amsterdam, 1963.

[Si] Steel , T.B., “Standards for Computers and Information Processing ”,
in Alt & Rubinoff , Eds., Advances in Computers Vol. 8, Academic Press ,
New York , 1967, pplO3— 152.

[Wi] Walk , K., Al ber , K., , l3arida t, K ., Bekic, H., thro~~~t, G., Ktxhel ka, V.,
01 iva, P., and Zeisel , G., Abstract Syntax for Interpretation of P1/I
IBM Laboratory Vienna, Technccal Report TR 25.082 (June 1968).

[W2 J Wegner , P., “Operational S~ nantic~ of Progra3llning Languages” , Proc. AG4
Conf. on Proving Assertions about Program, SIGPLAN Notices 7, 1
(Jan. 1972) , pp 128—l41.

[w3] Wegner, P., “The Vienna Definition Language”, Cciiputing Surveys 4, 1
(March 1972) , ppS—63

[W4] van Wi jngaarden, A., (ed) , et al . “Report on the Alger-i thmic Language
ALWL 68” , Ntj~~rische Mathenatik 14, 2 (1969), pp79—218.

